精英家教网 > 高中数学 > 题目详情
2.已知抛物线y2=4x上一点P在y轴上的射影为N,动点M在直线y=x+2上,则PM+PN的最小值为$\frac{3\sqrt{2}-2}{2}$.

分析 通过作抛物线的准线x=-1,过点P作x轴平行线交y轴、准线分别为N、Q点,通过抛物线定义可知PM+PN的最小值即为PF+PM-1的最小值即为抛物线焦点到直线y=x+2的距离减1,利用点到直线的距离计算即得结论.

解答 解:依题意,作抛物线的准线x=-1,过点P作x轴平行线交y轴、准线分别为N、Q点,
记抛物线焦点F(1,0),连结PF、PM,
则点F到直线y=x+2的距离d=$\frac{|1-0+2|}{\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$,
由抛物线定义可知PF=PN+QN=PN+1,
于是PM+PN的最小值即为PF+PM-1的最小值,
通过图象可知PF+PM的最小值为d,
∴PM+PN的最小值为$\frac{3\sqrt{2}}{2}$-1=$\frac{3\sqrt{2}-2}{2}$,
故答案为:$\frac{3\sqrt{2}-2}{2}$.

点评 本题考查直线与圆锥曲线的关系,考查数形结合能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知抛物线y=-2x2和抛物线上一点P(1,-2).
(Ⅰ)求抛物线的准线方程;
(Ⅱ)过点P作斜率为2,-2的直线l1,l2,分别交抛物线于A(x1,y1),B(x2,y2),设AB的中点M(x0,y0).求证:线段PM的中点Q在
 y轴上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若loga$\frac{2}{3}$>1(a>0且a≠1),则实数a的解集是{a|$\frac{2}{3}$<a<1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|1-2x|-|1+x|
(Ⅰ)解不等式f(x)≥4;
(Ⅱ)若函数g(x)=|1+x|+a的图象恒在函数f(x)的图象的上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.椭圆mx2+y2=1的一个焦点坐标为(1,0),则实数m的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的离心率为$\frac{\sqrt{3}}{2}$,右焦点到右准线的距离为$\frac{\sqrt{3}}{3}$.
(1)求椭圆C的方程
(2)如图,点M,N为椭圆上相异的两点,其中点M在第一象限,且直线AM与直线BN的斜率互为相反数.
①证明:直线MN的斜率为常数
②求四边形AMBN面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)同时满足:①对于定义域上的任意x,恒有f(x)+f(-x)=0;②对于定义域上的任意x1,x2,当x1≠x2时,恒有(x1-x2)[f(x1)-f(x2)]<0,则称函数f(x)为“优美函数”,则下列函数中是“优美函数”的是(  )
A.f(x)=ex+e-xB.f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$
C.f(x)=lg($\sqrt{{x}^{2}+1}-x$)D.f(x)=$\left\{\begin{array}{l}{{x}^{2},}&{x≥0}\\{-{x}^{2},}&{x<0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设an=$\frac{|sin1|}{2}$+$\frac{|sin2|}{{2}^{2}}$+…+$\frac{|sinn|}{{2}^{n}}$,则对任意正整数m,n(m>n)都成立的是(  )
A.am-an<$\frac{1}{{2}^{n}}$B.am-an>$\frac{1}{{2}^{n}}$C.am-an<$\frac{1}{{2}^{m}}$D.am-an>$\frac{m-n}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知命题p的否命题是“若A?B,则∁UA∩∁UB=∁UB”,写出命题p的逆否命题是若∁UA∩∁UB=∁UB,则A?B.

查看答案和解析>>

同步练习册答案