精英家教网 > 高中数学 > 题目详情

已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数).若直线与圆相切,求实数的值.

解析试题分析:先将圆的极坐标方程及直线的参数方程化为直角坐标方程,再利用直线与圆相切的充要条件:圆心到直线距离等于半径,得
试题解析:由得圆的方程为,4分;又由,得直线与圆相切,.  10分
考点:化极坐标方程及参数方程为普通方程,直线与圆相切,点到直线距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数).
(1)将曲线C的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程;
(2)若直线l与曲线C相交于A、B两点,且,试求实数m值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,以为极点,轴非负半轴为极轴建立坐标系,已知曲线的极坐标方程为,直线的参数方程为:为参数),两曲线相交于两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)若的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知直线的参数方程是为参数);以 为极点,轴正半轴为极轴的极坐标系中,圆的极坐标方程为.由直线上的点向圆引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).
(Ⅰ)写出直线的普通方程与曲线的直角坐标方程;
(Ⅱ)设曲线经过伸缩变换得到曲线,设为曲线上任一点,求的最小值,并求相应点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,曲线C的参数方程为为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,点,直线l的极坐标方程为.
(1)判断点P与直线l的位置关系,说明理由;
(2)设直线l与曲线C的两个交点为A、B,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为:,(t为参数),直线与曲线分别交于两点.
(1)写出曲线和直线的普通方程;
(2)若成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

坐标系与参数方程.
在直角坐标系xoy中,直线的参数方程为(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.
(1)求圆C的直角坐标方程;
(2)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在极坐标系中,设圆ρ=3上的点到直线ρ(cosθ+sinθ)=2的距离为d.求d的最大值.

查看答案和解析>>

同步练习册答案