【题目】已知函数满足,定义数列, , ,数列的前项和为, ,且.
(1) 求数列、的通项公式;
(2)令,求的前项和;
(3)数列中是否存在三项使成等差数列,若存在,求出的值,若不存在,请说明理由。
科目:高中数学 来源: 题型:
【题目】某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划建成一个矩形的高科技工业园区.已知,,,曲线是以点为顶点的且开口向上的抛物线的一段,如果要使矩形的相邻两边分别落在,上,且一个顶点落在曲线段上,问矩形的两边长分别为多少时使矩形工业园区的用地面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有以下四个命题:
①底面是平行四边形的四棱柱是平行六面体;
②底面是矩形的平行六面体是长方体;
③直四棱柱是直平行六面体;
④棱台的相对侧棱延长后必交于一点.
其中正确命题的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个盒子里装有标号1、2、3、4的4张形状大小完全相同的标签,先后随机地选取两张标签,根据下列条件,分别求两张标签上的数字为相邻整数的概率.
(1)标签的选取是无放回的;
(2)标签的选取是有放回的.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次篮球定点投篮训练中,规定每人最多投3次,在处每投进一球得3分;在处每投进一球得2分.如果前两次得分之和超过3分就停止投篮;否则投第三次.某同学在处的投中率,在处的投中率为,该同学选择先在处投第一球,以后都在处投,且每次投篮都互不影响,用表示该同学投篮训练结束后所得的总分,其分布列为:
0 | 2 | 3 | 4 | 5 | |
0.03 |
(1)求的值;
(2)求随机变量的数学期望;
(3)试比较该同学选择上述方式投篮得分超过3分与选择都在处投篮得分超过3分的概率的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了准确地调查我国某一时期的人口总量、人口分布、民族人口、城乡人口、受教育的程度、迁徙流动、就业状况等多方面的情况,需要用______的方法进行调查.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】春节期间某超市搞促销活动,当顾客购买商品的金额达到一定数量后可以参加抽奖活动,活动规则为:从装有个黑球, 个红球, 个白球的箱子中(除颜色外,球完全相同)摸球.
(Ⅰ)当顾客购买金额超过元而不超过元时,可从箱子中一次性摸出个小球,每摸出一个黑球奖励元的现金,每摸出一个红球奖励元的现金,每摸出一个白球奖励元的现金,求奖金数不少于元的概率;
(Ⅱ)当购买金额超过元时,可从箱子中摸两次,每次摸出个小球后,放回再摸一次,每摸出一个黑球和白球一样奖励元的现金,每摸出一个红球奖励元的现金,求奖金数小于元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解某省各景点在大众中的熟知度,随机对15~65岁的人群抽样了人,回答问题“某省有哪几个著名的旅游景点?”统计结果如下图表
组号 | 分组 | 回答正确 的人数 | 回答正确的人数 占本组的频率 |
第1组 | [15,25) | 0.5 | |
第2组 | [25,35) | 18 | |
第3组 | [35,45) | 0.9 | |
第4组 | [45,55) | 9 | 0.36 |
第5组 | [55,65] | 3 |
(1)分别求出的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.
(1)求第二小组的频率,并补全这个频率分布直方图;
(2)求这两个班参赛的学生人数是多少;
(3)这两个班参赛学生的成绩的中位数应落在第几小组内.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com