精英家教网 > 高中数学 > 题目详情
已知集合A={x|0<ax+1≤5},集合B={x|-
12
<x≤2}.
(1)若A⊆B,求数a的取值范围;
(2)若B⊆A,求数a的取值范围.
分析:分a>0、a=0、a<0求出集合A,再根据集合关系分类讨论a满足的条件求解.
解答:解:当a>0时,A=(-
1
a
4
a
];
当a=0时,A=R;
当a<0时,A=[
4
a
,-
1
a
).
(1)若A⊆B,分三种情况讨论:
1、当a>0,
-
1
a
≥-
1
2
4
a
≤2
⇒a≥2;
2、当a=0,A=R,A?B;
3、当a<0,
4
a
>-
1
2
-
1
a
≤2
⇒a<-8.
综上a的取值范围是{a|a≥2或a<-8}.
(2)若B⊆A,分三种情况讨论:
1、当a>0,
-
1
a
≤-
1
2
4
a
≥2
⇒0<a≤2;
2、当a=0,A=R,B⊆A,∴a=0成立;
3、当a<0,
4
a
≤-
1
2
-
1
a
>2
⇒-
1
2
<a<0.
综上a的取值范围是{a|-
1
2
<a≤2}.
点评:本题考查集合关系中参数范围的确定.利用分类讨论思想求解是解决此类题的常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|0<ax+1≤5},集合B={x|-
12
<x≤2}

(1)若A⊆B,求实数a的取值范围;
(2)若B⊆A,求实数a的取值范围;
(3)A、B能否相等.若存在,求出这样的实数a,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|0≤2x-1≤3},集合B={x|x=sint},t∈R,则A∩B为(  )
A、{x|
1
2
≤x≤1}
B、{x|-1≤x≤1}
C、{x|
1
2
≤x≤2}
D、{x|-
1
2
≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|0≤x<3,x∈Z},则集合A的子集的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)已知集合A={x|0<x<3},B={x|x2≥4},则A∩B=
{x|2≤x<3}
{x|2≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知集合A={0,1,2},B={x∈Z|-1<x<2},求A∪B
(2)已知集合A={x|0≤x≤2},B={x|-1<x<2},求A∩B.

查看答案和解析>>

同步练习册答案