精英家教网 > 高中数学 > 题目详情
若直线2(a+1)x+ay-2=0与直线ax+2y+1=0垂直,则a=(  )
分析:若两条直线的一般式方程分别为A1x+B1y+C=0、A2x+B2y+C=0,则两直线垂直的充要条件为A1A2+B1B2=0,由此建立关于a的等式,解之即可得到实数a的值.
解答:解:∵直线2(a+1)x+ay-2=0与直线ax+2y+1=0垂直,
∴2(a+1)×a+a×2=0,解之得a=-2或0.
故选:C
点评:本题给出两条直线互相垂直,求参数a的值,考查了直线的一般式方程与直线的垂直关系等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•自贡三模)给出下列5个命题:
①0<a≤
1
5
是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件
②如图所示,“嫦娥探月卫星”沿地月转移轨道飞向月球,在月球附近一点P进入以月球球心F为一个焦点的椭圆叙道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道III绕月飞行,若用2cl和2c2分别表示椭圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴的长,则有a1-c1=a2-c2
③y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④若a∈(π,
4
),则
1
1-tanα
>1+tanα>
2tanα

⑤函数f(x)=
e-x+3
e-x+2
(e是自然对数的底数)的最小值为2.
其中所有真命题的代号有
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列4个命题:
①0<a≤
1
5
是f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件;
②函数f(x)=
e-x+3
e-x+2
(e是自然对数的底数)的最小值为2;
③y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④若α∈(π,
4
),则
1
1-tanα
>1+tanα>
2tanα

其中所有假命题的代号有
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网给出下列5个命题:
①0<a≤
1
5
是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件;
②如图所示,“嫦娥探月卫星”沿地月转移轨道飞向月球,在月球附近一点P进入以月球球心F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道III绕月飞行,若用2Cl和2c2分别表示摘圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴的长,则有c1a2>a1c2
③函数y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④己知函数f(x)=loga(1-ax)在(O,1)上满足,f′(x)>0,贝U
1
1-a
>1+a>
2a

⑤函数f(x)=
tan2x+
(1+i)2
i
+1
tan2x+2
(x≠kπ+
π
2
),k∈Z,/为虚数单位)的最小值为2;
其中所有真命题的代号是
 

查看答案和解析>>

科目:高中数学 来源:0101 月考题 题型:单选题

若直线2(a+1)x+ay-2=0与直线ax+2y+1=0垂直,则a=

[     ]

A.-2
B.0
C.-2或0
D.

查看答案和解析>>

同步练习册答案