精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)设

①记的导函数为,求

②若方程有两个不同实根,求实数的取值范围;

(2)若在上存在一点使成立,求实数的取值范围.

【答案】(1);(2).

【解析】试题分析:(1)①对进行求导,将代入可得的值,

试题解析: 的定义域 的定义域为

(1)①,∴;②对进行二次求导,判断的单调性得其符号,从而可得的单调性,结合图象的大致形状可得的取值范围;(2)将题意转化为,令,题意等价于上的最小值小于0,对进行求导,对导函数进行分类讨论,判断单调性得其最值.

,∴递增,又,所以上递减, 递增。又趋于0的时候, 趋于6; 趋于的时候, 趋于,又,所以

(2)由题可得,∴,∴

,则上的最小值小于0,

1,当时,即 上递减,所以,解得

2,当 递增,∴解得

3,当,即,此时要求

所以

所以此时不成立,

综上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,( ).

(1)若 ,求函数的单调增区间;

(2)若时,不等式上恒成立,求实数的取值范围;

(3)当 时,记函数的导函数的两个零点是),求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来我国电子商务行业迎来蓬勃发展的新机遇,2016年双11期间,某平台的销售业绩高达918亿人民币,与此同时,相关管理部门也推出了针对电商的商品和服务评价体系,现从评价系统中随机选出200次成功的交易,并对其评价结果进行统计,对商品的好评率为,对服务的好评率为,其中对商品和服务都做出好评的交易为80次.

在犯错误概率不超过( )的前提下,认为商品好评与服务好评有关.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(1)若函数的图象在处的切线方程为,求 的值;

(2)若时,函数内是增函数,求的取值范围;

(3)当时,设函数的图象与函数的图象交于点,过线段的中点轴的垂线分别交于点,问是否存在点,使处的切线与处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)当时,求的值域;

(2)若b为正实数,的最大值为M,最小值为m,且满足,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A,B,C所对的边分别为a,b,c,且2S△ABC·.

(1)求角B的大小;

(2)若b=2,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以该直角坐标系的原点为极点, 轴的正半轴为极轴的极坐标系下,曲线的方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

2)设曲线和曲线的交点为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的甲、乙两个车间的名工人进行了劳动技能大比拼,规定:技能成绩大于或等于分为优秀, 分以下为非优秀,统计成成绩后,得到如下的列联表,且已知在甲、乙两个车间工人中随机抽取人为优秀的概率为.

优秀

非优秀

合计

甲车间

乙车间

合计

(1)请完成上面的列联表;

(2)根据列联表的数据,若按的可靠性要求,能否认为“成绩与车间有关系”?

查看答案和解析>>

同步练习册答案