精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x2-2x+1)ex(其中e为自然对数的底数).
(1)求函数f(x)的单调区间;
(2)定义:若函数h(x)在区间[s,t](s<t)上的取值范围为[s,t],则称区间[s,t]为函数h(x)的“域同区间”.试问函数f(x)在(1,+∞)上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.
考点:利用导数研究函数的单调性,函数单调性的性质,函数零点的判定定理
专题:导数的综合应用
分析:(1)利用函数的正负性,来求原函数的单调区间.
(2)构造新的函数,利用二次求导来判断原函数的单调性,再由特殊值即可判断函数零点的个数.
解答: 解:(1)因为f(x)=(x2-2x+1)ex
所以f'(x)=(2x-2)ex+(x2-2x+1)ex=(x2-1)ex=(x+1)(x-1)ex
当x<-1或x>1时,f'(x)>0,即函数f(x)的单调递增区间为(-∞,-1)和(1,+∞).
当-1<x<1时,f'(x)<0,即函数f(x)的单调递减区间为(-1,1).
所以函数f(x)的单调递增区间为(-∞,-1)和(1,+∞),单调递减区间为(-1,1).
(2)假设函数f(x)在(1,+∞)上存在“域同区间”[s,t](1<s<t),
由(1)知函数f(x)在(1,+∞)上是增函数,
所以
f(s)=s
f(t)=t
(s-1)2es=s
(t-1)2et=t

也就是方程(x-1)2ex=x有两个大于1的相异实根.
设g(x)=(x-1)2ex-x(x>1),则g'(x)=(x2-1)ex-1.
设h(x)=g'(x)=(x2-1)ex-1,则h'(x)=(x2+2x-1)ex
因为在(1,+∞)上有h'(x)>0,所以h(x)在(1,+∞)上单调递增.
因为h(1)=-1<0,h(2)=3e2-1>0,
即存在唯一的x0∈(1,2),使得h(x0)=0.
当x∈(1,x0)时,h(x)=g'(x)<0,即函数g(x)在(1,x0)上是减函数;
当x∈(x0,+∞)时,h(x)=g'(x)>0,即函数g(x)在(x0,+∞)上是增函数.
因为g(1)=-1<0,g(x0)<g(1)<0,g(2)=e2-2>0,
所以函数g(x)在区间(1,+∞)上只有一个零点.
这与方程(x-1)2ex=x有两个大于1的相异实根相矛盾,所以假设不成立.
所以函数f(x)在(1,+∞)上不存在“域同区间”.
故答案为:(1)函数f(x)的单调递增区间为(-∞,-1)和(1,+∞),单调递减区间为(-1,1).
(2)函数f(x)在(1,+∞)上不存在“域同区间”.
点评:本小题主要考查函数的单调性、函数的导数、函数的零点等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}前n项和Sn=
n2
4
,数列{bn}满足3bn-bn-1=n(n≥2,n∈N*),
(1)求数列{an}的通项公式;
(2)求证:当b1
1
4
时,数列{bn-an}为等比数列;
(3)在题(2)的条件下,设数列{bn}的前n项和为Tn,若数列{Tn}中只有T3最小,求b1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各组向量中,可以作为基底的是(  )
A、
e1
=(0,0)
e2
=(1,3)
B、
e1
=(3,5),
e2
=(-6,-10)
C、
e1
=(-1,2),
e2
=(-2,1)
D、
e1
=(-1,2),
e2
=(-
1
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,平面ABCD⊥平面BCEF,且四边形ABCD为矩形,四边形BCEF为直角梯形,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2.
(1)求证:AF∥平面CDE;
(2)求平面ADE与平面BCEF所成锐二面角的余弦值;
(3)求直线EF与平面ADE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是公差不为零的等差数列,a10=15,且a3、a4、a7成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
an
2n
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an},其前n项和Sn满足8Sn=an2+4an+3,且a2是a1和a7的等比中项.
(Ⅰ)求数列{
a
 
n
}
的通项公式;
(Ⅱ)符号[x]表示不超过实数x的最大整数,记bn=[log2(
an+3
4
)]
,求b1+b2+b3+…b2n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线a,b和平面α,β,γ,试判断下列说法是否正确,并说明理由:
(1)若a∥α,a∥b,b?α,则b∥α;
(2)若a∥β,β∥γ,则a∥γ;
(3)若a⊥α,b⊥a,b?α,则b∥α;
(4)若a⊥γ,β∥γ,则a⊥β.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=2,a2=4,an+1+2an-1=3an(n≥2)
(Ⅰ)证明:数列{an+1-an}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=an-1,Sn=
a1
b1b2
+
a2
b2b3
+…+
an
bnbn+1
,求使Sn
1
6
(m2-3m)对所有的n∈N*都成立的最大正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|.
(Ⅰ)若当g(x)≤5时,恒有f(x)≤6,求a的最大值;
(Ⅱ)若当x∈R时,恒有f(x)+g(x)≥3,求a的取值范围.

查看答案和解析>>

同步练习册答案