精英家教网 > 高中数学 > 题目详情

【题目】已知是抛物线:上异于原点的动点, 是平面上两个定点.的纵坐标为时,点到抛物线焦点的距离为.

(1)求抛物线的方程;

2)直线于另一点,直线于另一点,记直线的斜率为,直线的斜率为. 求证: 为定值,并求出该定值.

【答案】(1) (2)证明见解析.

【解析】分析:(1)由已知条件和抛物线的定义可得。可求得。故抛物线方程为 。(2)要表示斜率应先设出点的坐标找坐标之间的关系再求斜率乘积为定值因为点 在抛物线上,故可设 利用点 求出直线的斜率进而求其方程为: 将该方程与抛物线方程联立根据两根积求得求出同理可得: 进而求因为所以求得结论

详解:(1)到抛物线焦点的距离为

到准线的距离为

,得

抛物线方程为

(2)设

直线的方程为: ,得

,即

同理可得:

为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于下列命题:

①若是第一象限角,且,则

②函数是偶函数;

③函数的一个对称中心是

④函数上是增函数,

所有正确命题的序号是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱中,各棱长均为4, 分别是的中点.

(1)求证:平面

(2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面底面,底面为矩形,

.

(1)求证:

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,动点P满足

若点P为曲线C,求此曲线的方程;

已知直线l在两坐标轴上的截距相等,且与中的曲线C只有一个公共点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,弦CD⊥AB于点M,E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于G.
(1)求证:△EFG为等腰三角形;
(2)求线段MG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数为偶函数,求的值;

(2)若,求函数的单调递增区间;

(3)当时,若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义在的偶函数,在区间是减函数,且图象过点原点,则不等式的解集为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+ax2﹣3ax+1的图象经过四个象限,则实数a的取值范围为

查看答案和解析>>

同步练习册答案