3£®Ä³Í¬Ñ§Óá¶¼¸ºÎ»­°å¡·Ñо¿Å×ÎïÏßµÄÐÔÖÊ£º´ò¿ª¡¶¼¸ºÎ»­°å¡·Èí¼þ£¬»æÖÆÄ³Å×ÎïÏßE£ºy2=2px£¬ÔÚÅ×ÎïÏßÉÏÈÎÒâ»­Ò»¸öµãS£¬¶ÈÁ¿µãSµÄ×ø±ê£¨xS£¬yS£©£¬Èçͼ£®
£¨¢ñ£©Í϶¯µãS£¬·¢ÏÖµ±xS=4ʱ£¬yS=4£¬ÊÔÇóÅ×ÎïÏßEµÄ·½³Ì£»
£¨¢ò£©ÉèÅ×ÎïÏßEµÄ¶¥µãΪA£¬½¹µãΪF£¬¹¹ÔìÖ±ÏßSF½»Å×ÎïÏßEÓÚ²»Í¬Á½µãS¡¢T£¬¹¹ÔìÖ±ÏßAS¡¢AT·Ö±ð½»×¼ÏßÓÚM¡¢NÁ½µã£¬¹¹ÔìÖ±ÏßMT¡¢NS£®¾­¹Û²ìµÃ£ºÑØ×ÅÅ×ÎïÏßE£¬ÎÞÂÛÔõÑùÍ϶¯µãS£¬ºãÓÐMT¡ÎNS£®ÇëÄãÖ¤Ã÷ÕâÒ»½áÂÛ£®
£¨¢ó£©Îª½øÒ»²½Ñо¿¸ÃÅ×ÎïÏßEµÄÐÔÖÊ£¬Ä³Í¬Ñ§½øÐÐÁËÏÂÃæµÄ³¢ÊÔ£ºÔÚ£¨¢ò£©ÖУ¬°Ñ¡°½¹µãF¡±¸Ä±äΪÆäËü¡°¶¨µãG£¨g£¬0£©£¨g¡Ù0£©¡±£¬ÆäÓàÌõ¼þ²»±ä£¬·¢ÏÖ¡°MTÓëNS²»ÔÙÆ½ÐС±£®ÊÇ·ñ¿ÉÒÔÊʵ±¸ü¸Ä£¨¢ò£©ÖÐµÄÆäËüÌõ¼þ£¬Ê¹µÃÈÔÓС°MT¡ÎNS¡±³ÉÁ¢£¿Èç¹û¿ÉÒÔ£¬Çëд³öÏàÓ¦µÄÕýÈ·ÃüÌ⣻·ñÔò£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©°ÑxS=4£¬yS=4´úÈëy2=2px£¬µÃp£¬¼´¿ÉÇó³öÅ×ÎïÏßEµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßl£ºmy=x-1£¬´úÈëÅ×ÎïÏß·½³Ì£¬Çó³öM£¬NµÄ×ø±ê£¬¿ÉµÃ$\overrightarrow{MT}$¡¢$\overrightarrow{NS}$µÄ×ø±ê£¬Ö¤Ã÷$\overrightarrow{MT}$¡Î$\overrightarrow{NS}$£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨¢ó£©ÉèÅ×ÎïÏßE£ºy2=4xµÄ¶¥µãΪA£¬¶¨µãG£¨g£¬0£©£¨g¡Ù0£©£¬¹ýµãGµÄÖ±ÏßlÓëÅ×ÎïÏßEÏཻÓÚS¡¢TÁ½µã£¬Ö±ÏßAS¡¢AT·Ö±ð½»Ö±Ïßx=-gÓÚM¡¢NÁ½µã£¬ÔòMT¡ÎNS£®

½â´ð ½â£º£¨¢ñ£©°ÑxS=4£¬yS=4´úÈëy2=2px£¬µÃp=2£¬¡­£¨3·Ö£©
Òò´Ë£¬Å×ÎïÏßEµÄ·½³Ìy2=4x£®¡­£¨4·Ö£©
£¨¢ò£©ÒòΪÅ×ÎïÏßEµÄ½¹µãΪF£¨1£¬0£©£¬ÉèS£¨x1£¬y1£©£¬T£¨x2£¬y2£©£¬
ÒÀÌâÒâ¿ÉÉèÖ±Ïßl£ºmy=x-1£¬
´úÈëÅ×ÎïÏß·½³ÌµÃy2-4my-4=0£¬
Ôòy1+y2=4m£¬y1y2=-4 ¢Ù¡­£¨6·Ö£©
ÓÖÒòΪlAS£ºy=$\frac{{y}_{1}}{{x}_{1}}$•x£¬lAT£ºy=$\frac{{y}_{2}}{{x}_{2}}$•x£¬
ËùÒÔM£¨-1£¬-$\frac{{y}_{1}}{{x}_{1}}$£©£¬N£¨-1£¬-$\frac{{y}_{2}}{{x}_{2}}$£©£¬
ËùÒÔ$\overrightarrow{MT}$=£¨x2+1£¬y2+$\frac{{y}_{1}}{{x}_{1}}$£©£¬$\overrightarrow{NS}$=£¨x1+1£¬y1+$\frac{{y}_{2}}{{x}_{2}}$£©£¬¡­£¨7·Ö£©
ÓÖÒòΪ£¨y2+$\frac{{y}_{1}}{{x}_{1}}$£©£¨x1+1£©-£¨y1+$\frac{{y}_{2}}{{x}_{2}}$£©£¨x2+1£©£¬¡­£¨8·Ö£©
=£¨y1-y2£©£¨$\frac{{{y}_{1}}^{2}{{y}_{2}}^{2}-16}{4{y}_{1}{y}_{2}}$£©£¬¢Ú
°Ñ¢Ù´úÈë¢Ú£¬µÃ£¨y1-y2£©£¨$\frac{{{y}_{1}}^{2}{{y}_{2}}^{2}-16}{4{y}_{1}{y}_{2}}$£©=0£¬¡­£¨10·Ö£©
¼´£¨y2+$\frac{{y}_{1}}{{x}_{1}}$£©£¨x1+1£©-£¨y1+$\frac{{y}_{2}}{{x}_{2}}$£©£¨x2+1£©=0£¬
ËùÒÔ$\overrightarrow{MT}$¡Î$\overrightarrow{NS}$£¬
ÓÖÒòΪM¡¢T¡¢N¡¢SËĵ㲻¹²Ïߣ¬ËùÒÔMT¡ÎNS£®¡­£¨11·Ö£©
£¨¢ó£©ÉèÅ×ÎïÏßE£ºy2=4xµÄ¶¥µãΪA£¬¶¨µãG£¨g£¬0£©£¨g¡Ù0£©£¬¹ýµãGµÄÖ±ÏßlÓëÅ×ÎïÏßEÏཻÓÚS¡¢TÁ½µã£¬Ö±ÏßAS¡¢AT·Ö±ð½»Ö±Ïßx=-gÓÚM¡¢NÁ½µã£¬ÔòMT¡ÎNS£®¡­£¨14·Ö£©

µãÆÀ ±¾Ð¡ÌâÖ÷Òª¿¼²éÅ×ÎïÏߵıê×¼·½³Ì¡¢Ö±ÏßÓëÔ²×¶ÇúÏßµÄλÖùØÏµµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢·ÖÀàÓëÕûºÏ˼Ïë¡¢ÊýÐνáºÏ˼ÏëµÈ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÈôSn=1-2+3-4+¡­+£¨-1£©n-1n£¬ÔòS17+S33+S50µÄֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖª¼¯ºÏA={-1£¬0£¬1}£¬B={x|x2-x+1}£¬ÈôA¡ÈB=A£¬Ôòx=0»ò1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÊýÁÐ{an}Âú×㣺a1+$\frac{{a}_{2}}{¦Ë}$+$\frac{{a}_{3}}{{¦Ë}^{2}}$+¡­+$\frac{{a}_{n}}{{¦Ë}^{n-1}}$=n2+2n£¨ÆäÖг£Êý¦Ë£¾0£¬n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©µ±¦Ë=4ʱ£¬Èôbn=$\frac{{{a_n}-£¨2n+1£©•{r^n}}}{{£¨n+\frac{1}{2}£©£¨1+{r^n}£©}}$£¨r¡ÊR£¬r¡Ù-1£©£¬Çó$\lim_{n¡ú¡Þ}{b_n}$
£¨3£©ÉèSnΪÊýÁÐ{an}µÄǰnÏîºÍ£®Èô¶ÔÈÎÒân¡ÊN*£¬ÊÇ·ñ´æÔڦˡÙ1£¬Ê¹µÃ²»µÈʽ£¨1-¦Ë£©Sn+£¨2n+1£©•¦Ën¡Ü3³ÉÁ¢£¬Èô´æÔÚ£¬ÇóʵÊý¦ËµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®´üÖÐÓÐÈô¸É¸öºÚÇò£¬3¸ö°×Çò£¬2¸öºìÇò£¨´óСÐÎ×´Ïàͬ£©£¬´ÓÖÐÈÎÈ¡2¸öÇò£¬Ã¿È¡µ½Ò»¸öºÚÇòµÃ0·Ö£¬Ã¿È¡µ½Ò»¸ö°×ÇòµÃ1·Ö£¬Ã¿È¡µ½Ò»¸öºìÇòµÃ2·Ö£¬ÒÑÖªµÃ0·ÖµÄ¸ÅÂÊΪ$\frac{1}{6}$£®Çó
£¨1£©´üÖкÚÇòµÄ¸öÊý£»
£¨2£©ÖÁÉÙµÃ2·ÖµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÊýÁÐ{an}µÄÊ×Ïîa1=1£¬a2=3£¬Ç°nÏîºÍΪSn£¬ÇÒSn+1£¬Sn£¬Sn-1£¨n£¾1£©·Ö²¼ÊÇÖ±ÏßlÉϵĵãA£¬B£¬CµÄºá×ø±ê£¬$\overrightarrow{AB}=\frac{{2{a_n}+1}}{a_n}\overrightarrow{BC}$£¬Éèb1=1£¬bn+1=log2£¨an+1£©+bn£®
£¨1£©ÅжÏÊýÁÐ{an+1}ÊÇ·ñΪµÈ±ÈÊýÁУ¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨2£©Éè${C_n}=\frac{{{4^{\frac{{{b_{n+1}}-1}}{n+1}}}}}{{{a_n}{a_{n+1}}}}$£¬Ö¤Ã÷£ºC1+C2+C3+¡­+Cn£¼1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖª¡÷ABCµÄÈý¸öÄÚ½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðΪa¡¢b¡¢c£¬ÏòÁ¿$\overrightarrow{m}$=£¨4£¬1£©£¬$\overrightarrow{n}$=£¨sin2$\frac{A}{2}$£¬cos2A£©£¬ÇÒ$\overrightarrow{m}$•$\overrightarrow{n}$=$\frac{1}{2}$£®
£¨1£©Çó½ÇAµÄ´óС£»
£¨2£©Èô2bsinB=£¨2a-c£©sinA+£¨2c-a£©sinC£¬ÊÔÅжϡ÷ABCµÄÐÎ×´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÔÚ¡÷ABCÖУ¬bcosC+ccosB=asinA£¬ÔòÈý½ÇÐÎABCµÄÐÎ×´ÊÇÖ±½ÇÈý½ÇÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸