精英家教网 > 高中数学 > 题目详情
18.袋中有若干个黑球,3个白球,2个红球(大小形状相同),从中任取2个球,每取到一个黑球得0分,每取到一个白球得1分,每取到一个红球得2分,已知得0分的概率为$\frac{1}{6}$.求
(1)袋中黑球的个数;
(2)至少得2分的概率.

分析 (1)先设出袋中黑球个数为x个,通过题意可判断当取到的两球均为黑球时,得分为0分,求出取到两球均为黑球的情况,比上任取两球的情况,即为的0分的概率,据此,解出x的值,
(2)根据互斥事件的概率公式,分别求出得分为0分和1分的概率,计算即可.

解答 解:(1)设袋中黑球的个数为x个,
从袋中任取2个球,共有Cx+52=$\frac{1}{2}$(x+4)(x+5)种不同的取法,
取道两只黑球的情况有Cx2=$\frac{1}{2}$x(x-1)种不同的取法,
而当取到的两球均为黑球时,得分为0分,
∴得0分的概率为$\frac{\frac{1}{2}x(x-1)}{\frac{1}{2}(x+4)(x+5)}$=$\frac{1}{6}$,
∴x=4;
(2)得分小于2分有0分(2个黑球),其概率为$\frac{1}{6}$,1分(1个白球一个黑球),其概率为$\frac{{C}_{3}^{1}•{C}_{4}^{1}}{{C}_{9}^{2}}$=$\frac{1}{3}$,
故至少得2分的概率为1-$\frac{1}{6}$-$\frac{1}{3}$=$\frac{1}{2}$.

点评 本题考查了古典概型概率问题,以及互斥事件的概率问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.求不等式|x|>x的解集{x|x<0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=3ax2-2(a+c)x+c(a>0,a,c∈R)
(1)设a>c>0,若f(x)>c2-2c+a对x∈[1,+∞]恒成立,求c的取值范围;
(2)函数f(x)在区间(0,1)内是否有零点,有几个零点?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在如图的正方形中随机撒一把豆子,用随机模拟的方法估圆周率的值:经查数,落在正方形中的豆子的总数为n粒,其中m(m<n)粒豆子落在该正方形的内切圆内,以此估计圆周率π为(  )
A.$\frac{m}{n}$B.$\frac{2m}{n}$C.$\frac{3m}{n}$D.$\frac{4m}{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.正方体表面积为24,则它的外接球、内切球、以及与它的各条棱都相切的球的表面积分别是12π;4π;8π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线E:y2=2px,在抛物线上任意画一个点S,度量点S的坐标(xS,yS),如图.
(Ⅰ)拖动点S,发现当xS=4时,yS=4,试求抛物线E的方程;
(Ⅱ)设抛物线E的顶点为A,焦点为F,构造直线SF交抛物线E于不同两点S、T,构造直线AS、AT分别交准线于M、N两点,构造直线MT、NS.经观察得:沿着抛物线E,无论怎样拖动点S,恒有MT∥NS.请你证明这一结论.
(Ⅲ)为进一步研究该抛物线E的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点F”改变为其它“定点G(g,0)(g≠0)”,其余条件不变,发现“MT与NS不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“MT∥NS”成立?如果可以,请写出相应的正确命题;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.关于z的方程z+i=2+iz的根是(  )
A.$\frac{3}{2}-\frac{1}{2}$iB.$\frac{3}{2}+\frac{1}{2}$iC.3-iD.3+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知:二次函数f(x)=ax2+bx(a,b为常数且a≠0)满足f(x+5)=f(-x-3)且方程f(x)=x有等根
(1)求f(x)的解析式;
(2)是否存在实数m、n,(m<n),使f(x)的定义域和值域分别为[m,n]和[3m,3n]?如果存在,求出m、n的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若直角坐标平面内的两个不同点P、Q满足条件:
①P、Q都在函数y=f(x)的图象上;
②P、Q关于原点对称,则称点对[P,Q]是函数y=f(x)的一对“友好点对”(注:点对[P,Q]与[Q,P]看作同一对“友好点对”).已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x>0}\\{-{x}^{2}-4x,x≤0}\end{array}\right.$,则此函数的“友好点对”有(  ) 对.
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案