精英家教网 > 高中数学 > 题目详情
10.关于z的方程z+i=2+iz的根是(  )
A.$\frac{3}{2}-\frac{1}{2}$iB.$\frac{3}{2}+\frac{1}{2}$iC.3-iD.3+i

分析 由z的方程z+i=2+iz的根,可得z=$\frac{2-i}{1-i}$,化简,即可得出结论.

解答 解:∵z的方程z+i=2+iz的根,
∴z=$\frac{2-i}{1-i}$=$\frac{(2-i)(1+i)}{2}$=$\frac{3}{2}+\frac{1}{2}$i,
故选:B.

点评 本题考查复数的代数形式的运算,本题解题的关键是整理出复数的表示式,再进行复数的除法运算,或者设出复数的代数形式,根据复数相等的充要条件来解题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.判断下列函数是否相等,并说明理由:
表示炮弹飞行高度h与时间t关系的函数h=130t-5t2和二次函数y=130x-5x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若关于x的一元二次实系数方程x2+px+q=0有一个根为 1+i,(i为虚数单位),则p+q的值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.袋中有若干个黑球,3个白球,2个红球(大小形状相同),从中任取2个球,每取到一个黑球得0分,每取到一个白球得1分,每取到一个红球得2分,已知得0分的概率为$\frac{1}{6}$.求
(1)袋中黑球的个数;
(2)至少得2分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.直线l不经过第四象限,它的倾斜角为$\frac{π}{6}$,原点到该直线的距离为$\frac{{\sqrt{3}}}{2}$,则直线l的方程是$y=\frac{{\sqrt{3}}}{3}x+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.有三个数a,b,c成等比数列,其积为512,且a-2,b,c-2成等差数列,求a,b,c这三个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知:f(x)是定义的R上的不恒为零的函数,且对任意a、b∈R,满足:f(a•b)=af(b)+bf(a),且f(2)=2,an=$\frac{{f({2^{-n}})}}{n},则f(\frac{1}{2})$=-$\frac{1}{2}$;数列{an}的通项公式an=-$\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知|$\overrightarrow a$|=1,|$\overrightarrow b$|=2,<$\overrightarrow a$,$\overrightarrow b$>=60°,则$\overrightarrow a$在2$\overrightarrow a+\overrightarrow b$方向上的正射影的数量是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案