精英家教网 > 高中数学 > 题目详情
如图,ABCD是边长为2的正方形,ABEF是矩形,且二面角C-AB-F是直二面角,AF=1,G是EF的中点.
(1)求证:平面AGC⊥平面BGC;
(2)求GB与平面AGC所成角的正弦值.
分析:(1)由题意可得:CB⊥面ABEF,所以有CB⊥AG,CB⊥BG,根据线段的长度关系可得:AB2=AG2+BG2,即可得到AG⊥BG,再利用面面垂直的判断定理可得面面垂直.
(2)由(1)知,面ACG⊥面BGC,且交于GC,在平面BGC内作BH⊥GC,垂足为H,则BH⊥平面AGC,所以∠BGH是BG与平面AGC所成的角,即∠CGB为所求角,进而利用解三角形的有关知识求出答案.
解答:解:(1)证明:∵正方形ABCD,
∴CB⊥AB.
∵二面角C-AB-F是直二面角,
∴CB⊥面ABEF.
∵AG,GB?面ABEF,
∴CB⊥AG,CB⊥BG,…(2分)
又∵AD=2a,AF=a,ABEF是矩形,G是EF的中点,
AG=BG=
2
a,AB=2a,AB2=AG2+BG2

∴AG⊥BG.…(4分)
∵CB∩BG=B,
∴AG⊥平面GBC,
又∵AG?面ACG,
∴平面AGC⊥平面BGC.…(6分)
(2)由(1)知,面ACG⊥面BGC,且交于GC,在平面BGC内作BH⊥GC,垂足为H,则BH⊥平面AGC,
所以∠BGH是BG与平面AGC所成的角,即∠CGB为所求角,…(8分)
因为G为EF的中点,并且BE=1,EF=2,
所以BG=
2

在Rt△BCG中,BC=2,BG=
2
,所以CG=
6

所以sin∠BGC=
BC
CG
=
6
3
.…(12分)
点评:解决此类问题的关键是熟练掌握面面垂直的判断定理与解三角形的有关知识,以及线面角的作法,而求空间角步骤是:作角,证角,求角,而作角是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值;
(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,ABCD是边长为a的菱形,且∠BAD=60°,△PAD为正三角形,且面PAD⊥面ABCD.
(1)求cos<
AB
PD
>的值;
(2)若E为AB的中点,F为PD的中点,求|
EF
|的值;
(3)求二面角P-BC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是边长为2的正方形,面EAD⊥面ABCD,且EA=ED,EF∥AB,且EF=1,O是线段AD的中点,三棱锥F-OBC的体积为
23

(1)求证:OF⊥面FBC;
(2)求二面角B-OF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宁城县模拟)如图,ABCD是边长为1的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求点F到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是边长为2的正方形纸片,沿某动直线l为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B都落在边AD上,记为B';折痕与AB交于点E,以EB和EB’为邻边作平行四边形EB’MB.若以B为原点,BC所在直线为x轴建立直角坐标系(如下图):
(Ⅰ).求点M的轨迹方程;
(Ⅱ).若曲线S是由点M的轨迹及其关于边AB对称的曲线组成的,等腰梯形A1B1C1D1的三边A1B1,B1C1,C1D1分别与曲线S切于点P,Q,R.求梯形A1B1C1D1面积的最小值.

查看答案和解析>>

同步练习册答案