精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=lg(x2+ax﹣a﹣1),给出下述命题:
①f(x)有最小值;
②当a=0时,f(x)的值域为R;
③若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是a≥﹣4;
④a=1时,f(x)的定义域为(﹣1,0);
则其中正确的命题的序号是

【答案】②
【解析】解:①f(x)有最小值不一定正确,因为定义域不是实数集时,
函数f(x)=lg(x2+ax﹣a﹣1)的值域是R,无最小值,
题目中不能排除这种情况的出现,故①不对.
②当a=0时,f(x)的值域为R是正确的,因为当a=0时,函数的定义域不是R,
即内层函数的值域是(0,+∞)故(x)的值域为R故②正确.
③若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是a≥﹣4.是不正确的,
由f(x)在区间[2,+∞)上单调递增,可得内层函数的对称轴﹣ ≤2,可得a≥﹣4,
由对数式有意义可得4+2a﹣a﹣1>0,解得a>﹣3,
故由f(x)在区间[2,+∞)上单调递增,应得出a>﹣3,故③不对;
④a=1时,f(x)=lg(x2+x﹣2),令x2+x﹣2>0,解得:x>1或x<﹣2,
故函数的定义域是(﹣∞,﹣2)∪(1,+∞),故④不对;
综上,②正确,
所以答案是:②.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知p:关于x的不等式x2+2ax+4>0对一切 恒成立;q:函数f(x)=-(5-2a)x在R上是减函数.若“p或q”为真,“p且q”为假,求实数a的取值范围( )。
A.
B.B、
C.C、
D.a≥-2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列三个命题:
①若一个球的半径缩小到原来的 ,则其体积缩小到原来的 ;
②若两组数据的平均数相等,则它们的标准差也相等;
③直线x+y+1=0与圆x2+y2= 相切.
其中真命题的序号是( )
A.①②③
B.①②
C.①③
D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a>0且a≠1,函数y=a2x+2ax﹣1在[﹣1,1]的最大值是14,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知c>0,设命题p:函数ycx为减函数.命题q:当时,函数恒成立.如果“pq”为真命题,“pq”为假命题,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga ,g(x)=1+loga(x﹣1),(a>0且a≠1),设f(x)和g(x)的定义域的公共部分为D,
(1)求集合D;
(2)当a>1时.若不等式g(x﹣ )﹣f(2x)>2在D内恒成立,求a的取值范围;
(3)是否存在实数a,当[m,n]D时,f(x)在[m,n]上的值域是[g(n),g(m)],若存在,求实数a的取值范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学将100名髙一新生分成水平相同的甲、乙两个平行班”,每班50.陈老师采用AB两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为成绩优秀

 

0.05

0.01

0.001

 

3.841

6.635

10.828

(I)从乙班随机抽取2名学生的成绩,成绩优秀的个数为,求的分布列和数学期望

(II)根据频率分布直方图填写下面2 x2列联表,并判断是否有95%的把握认为:“成绩优秀与教学方式有关.

甲班A方式)

乙班(B方式)

总计

成绩优秀

成绩不优秀

总计

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数,在矩形ABCD中, OAB的中点,点EFG分别在BCCDDA上移动,且PGEOF的交点(如图),问是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)+x是偶函数,且f(2)=lg32+log416+6lg +lg ,若g(x)=f(x)+1,则g(﹣2)=

查看答案和解析>>

同步练习册答案