精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠BAD=60°,PB=PD=2,AC∩BD=O. (Ⅰ)证明:PC⊥BD
(Ⅱ)若E是PA的中点,且△ABC与平面PAC所成的角的正切值为 ,求二面角A﹣EC﹣B的余弦值.

【答案】证明:(Ⅰ)因为底面是菱形,所以BD⊥AC.
又PB=PD,且O是BD中点,所以BD⊥PO.
PO∩AC=O,所以BD⊥面PAC.
又PC面PAC,所以BD⊥PC.
(Ⅱ)由(Ⅰ)可知,OE是BE在面PAC上的射影,
所以∠OEB是BE与面PAC所成的角.
在Rt△BOE中, ,BO=1,所以
在Rt△PEO中, ,所以
所以 ,又
所以PO2+AO2=PA2 , 所以PO⊥AO.
又PO⊥BD,BD∩AO=O,所以PO⊥面ABCD.
方法一:
过O做OH⊥EC于H,由(Ⅰ)知BD⊥面PAC,所以BD⊥EC,所以EC⊥面BOH,BH⊥EC,
所以∠OHB是二面角A﹣EC﹣B的平面角.
在△PAC中, ,所以PA2+PC2=AC2 , 即AP⊥PC.
所以
,得
,所以二面角A﹣EC﹣B的余弦值为
方法二:
如图,以 建立空间直角坐标系,

,B(0,1,0),
设面BEC的法向量为 ,则
,得方程的一组解为

又面AEC的一个法向量为
所以 ,所以二面角A﹣EC﹣B的余弦值为
【解析】(Ⅰ)证明BD⊥AC,BD⊥PO,推出BD⊥面PAC,然后证明BD⊥PC.(Ⅱ)说明OE是BE在面PAC上的射影,∠OEB是BE与面PAC所成的角.利用Rt△BOE,在Rt△PEO中,证明PO⊥AO.推出PO⊥面ABCD. 方法一:说明∠OHB是二面角A﹣EC﹣B的平面角.通过求解三角形求解二面角A﹣EC﹣B的余弦值.方法二:以 建立空间直角坐标系,求出平面BEC的法向量,平面AEC的一个法向量,利用空间向量的数量积求解即可.
【考点精析】根据题目的已知条件,利用直线与平面垂直的性质的相关知识可以得到问题的答案,需要掌握垂直于同一个平面的两条直线平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法错误的是(
A.若p:?x∈R,x2﹣x+1≥0,则¬p:?x∈R,x2﹣x+1<0
B.“ ”是“θ=30°或θ=150°”的充分不必要条件
C.命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”
D.已知p:?x∈R,cosx=1,q:?x∈R,x2﹣x+2>0,则“p∧(¬q)”为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=e1x(﹣a+cosx),a∈R.
(Ⅰ)若函数y=f(x)在[0,π]存在单调增区间,求实数a的取值范围;
(Ⅱ)若f( )=0,证明:对于x∈[﹣1, ],总有f(﹣x﹣1)+2f′(x)cos(﹣x﹣1)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=1,E,F分别是CC1 , BC的中点,AE⊥A1B1 , D为棱A1B1上的点.

(1)证明:AB⊥AC;
(2)证明:DF⊥AE;
(3)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为 ?若存在,说明点D的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p≠0),发球次数为X,若X的数学期望EX>1.75,则p的取值范围是(
A.(0,
B.( ,1)
C.(0,
D.( ,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不恒为零的函数f(x)在定义域[0,1]上的图象连续不间断,满足条件f(0)=f(1)=0,且对任意x1 , x2∈[0,1]都有|f(x1)﹣f(x2)|≤ |x1﹣x2|,则对下列四个结论: ①若f(1﹣x)=f(x)且0≤x≤ 时,f(x)= x(x﹣ ),则当 <x≤1时,f(x)= (1﹣x)( ﹣x);
②若对x∈[0,1]都有f(1﹣x)=﹣f(x),则y=f(x)至少有3个零点;
③对x∈[0,1],|f(x)|≤ 恒成立;
④对x1 , x2∈[0,1],|f(x1)﹣f(x2)|≤ 恒成立.
其中正确的结论个数有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为 (α为参数).以点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ﹣ )=2 (Ⅰ)将直线l化为直角坐标方程;
(Ⅱ)求曲线C上的一点Q 到直线l 的距离的最大值及此时点Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 . (Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ)若 ,画出函数y=g(x)的图象,讨论y=g(x)﹣m(m∈R)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=Asin(ωx+)(其中A>0,|φ| )的图象如图,为了得到 的图象,则需将f(x)的图象(
A.向右平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向左平移 个单位

查看答案和解析>>

同步练习册答案