精英家教网 > 高中数学 > 题目详情
14.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则直线EF与CD所成的角的度数为30°.

分析 取AD的中点G,连接GE,GF,∠FEG即为EF与CD所成的角,由此能求出直线EF与CD所成的角的度数.

解答 解:设CD=2AB=4,
如图所示,取AD的中点G,连接GE,GF
∵E、F分别为AC、BD中点,
∴GE∥CD,且GE=$\frac{1}{2}$CD=2
则∠FEG即为EF与CD所成的角,
GF∥AB,且GF=$\frac{1}{2}$AB=1
又∵EF⊥AB,∴EF⊥GF,
∴∠FEG=30°.
故答案为:30°.

点评 本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知向量$\overrightarrow a=(x,y)$(x,y∈R),$\overrightarrow b=(1,2)$,若x2+y2=1,则$|\overrightarrow a-\overrightarrow b|$的最大值为$\sqrt{5}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)是定义在R上的函数,且满足f(x-1)=f(x+1)=f(1-x),当x∈[2,3]时,f(x)=-2(x-3)2+4,求当x∈[1,2]时,f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知OA为球O的半径,垂直于OA的平面截球面得到圆M(M为截面与OA的交点).若圆M的面积为2π,OM=$\sqrt{2}$,则球的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一条渐近线与直线x+2y+1=0垂直,F1,F2为C的焦点,A为双曲线上一点,若|F1A|=2|F2A|,则cos∠AF2F1=$\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a>0,b>0,且ab=1,则函数f(x)=ax与函数g(x)=-logbx的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.抛物线x2=$\frac{1}{4}$y上的一点M到焦点的距离为1,则点M到x轴的距离是(  )
A.$\frac{17}{16}$B.$\frac{15}{16}$C.1D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若全集U={1,2,3,4,5},M={1,4},N={2,3},则(∁UM)∩N=(  )
A.{3,5}B.{2,3,5}C.{2,5}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a∈R,若不等式lnx-$\frac{a}{x}$+x-2>0对于任意x∈(1,+∞)恒成立,则a的取值范围为(  )
A.a≤2B.a≤1C.a≤-1D.a≤0

查看答案和解析>>

同步练习册答案