精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),其左、右焦点分别为F1(-c,0)、F2(c,0),且a、b、c成等比数列.
(1)求
c
a
的值.
(2)若椭圆C的上顶点、右顶点分别为A、B,求证:∠F1AB=90°.
(3)若P为椭圆C上的任意一点,是否存在过点F2、P的直线l,使l与y轴的交点R满足
RP
=-2
PF2
?若存在,求直线l的斜率k;若不存在,请说明理由.
分析:(1)由b2=ac及b2=a2-c2能够推导出
c
a
的值.
(2)由题设条件可得
AF1
=(-c,-b)
AB
=(a,-b)
AF1
AB
=-ac+b2=0
,由此导出∠F1AB=90°.
(3)由题设,显然直线l垂直于x轴时不合题意,设直线l的方程为y=k(x-c),求出R点坐标利用题设条件进行求解.
解答:解:(1)由题设b2=ac及b2=a2-c2,得
c
a
=
5
-1
2

(2)由题设A(0,b),B(a,0),又F1(-c,0),
AF1
=(-c,-b)
AB
=(a,-b)

于是
AF1
AB
=-ac+b2=0

故∠F1AB=90°.(10分)
(3)由题设,显然直线l垂直于x轴时不合题意,设直线l的方程为y=k(x-c),
得R(0,-kc),又F2(c,0),及
RP
=-2
PF2
,得点P的坐标为(2c,kc),(12分)
因为点P在椭圆上,
所以
(2c)2
a2
+
(kc)2
b2
=1

又b2=ac,得4(
c
a
)2+k2
c
a
=1
k2=
5-3
5
2
<0
,与k2≥0矛盾,
故不存在满足题意的直线l.
点评:本题考查椭圆性质的灵活运用和椭圆与直线的位置关系,难度较大,解题时要认真审题仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案