精英家教网 > 高中数学 > 题目详情
已知函数(a>0)在区间[0,1]上递增,在区间[1,+∞)上递减,
(1)求a的值,并写出f(x)的单调区间;
(2)当x≥1时,g(x)=f(x),当x<1时,g(x)=(x。若x∈R时, g(4x+a)<g(m·2x-3)恒成立,求m的取值范围。
解:(1)a=1;
f(x)在上递减,在[-1,1]上递增。
(2)m<4。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数,a>0,      

(Ⅰ)讨论的单调性;

(Ⅱ)设a=3,求在区间{1,}上值域。期中e=2.71828…是自然对数的底数。

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(天津卷解析版) 题型:解答题

已知函数其中a>0.

(I)求函数f(x)的单调区间;

(II)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;

(III)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值。

【考点定位】本小题主要考查导数的运算,利用导数研究函数的单调性、函数的零点,函数的最值等基础知识.考查函数思想、分类讨论思想.考查综合分析和解决问题的能力.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广西省南宁市高三第二次适应性考试数学理卷 题型:选择题

已知函数(a>0且)在〔1,2〕上的最大值与最小值之差为,则a的值为

A.            B. 2             C.            D.

 

查看答案和解析>>

科目:高中数学 来源:2012届福建省高二下学期期末考试数学(文) 题型:解答题

(14分)已知函数   (a>0)

(1)判断并证明y=在x∈(0,+∞)上的单调性;

(2)若存在,使,则称为函数的不动点,现已知该函数有且仅有一个不动点,求的值,并求出不动点

(3)设,若y=在(0,+∞)上有三个零点 , 求的取值范围.

 

查看答案和解析>>

同步练习册答案