精英家教网 > 高中数学 > 题目详情
3.函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈(-1,1]时,f(x)=1-x2,函数g(x)=$\left\{\begin{array}{l}{lg|x|,x≠0}\\{1,x=0}\end{array}\right.$则函数h(x)=f(x)-g(x)在区间[-5,10]内零点的个数为(  )
A.8B.12C.13D.14

分析 函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈(-1,1]时f(x)=1-x2,故其为周期性函数,函数g(x)是一个偶函数,作出它们的图象,由图象上看交点个数.对边界处的关键点要作准.

解答 解:作出区间[-5,10]上的两个函数的图象,
y轴右边最后一个公共点是(10,1)y轴左边有四个交点,
y轴右边是9个交点,y轴上有一个交点,总共是14个交点.
故选:D.

点评 考查答题者使用图象辅助作题的意识与能力,本题是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知平面内的向量$\overrightarrow{OA},\overrightarrow{OB}$满足:|$\overrightarrow{OA}$|=1,($\overrightarrow{OA}$+$\overrightarrow{OB}$)•($\overrightarrow{OA}$-$\overrightarrow{OB}$)=0,且$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为60°,又$\overrightarrow{OP}$=λ${\;}_{1}\overrightarrow{OA}$+λ${\;}_{2}\overrightarrow{OB}$,0≤λ1≤1,1≤λ2≤2,则由满足条件的点P所组成的图形的面积是(  )
A.2B.$\sqrt{3}$C.1D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若x>0,y>0且x+2y=xy,则x+2y的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知某组数据采用了四种不同的回归方程进行回归分析,则回归效果最好的相关指数R2的值是(  )
A.0.97B.0.83C.0.32D.0.17

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)=x2+2,g(x)=sinx,则下列函数中既不是奇函数又不是偶函数的函数是①②(填写所有正确结论对应的序号)
①f(x)+g(x);
②f(x)-g(x);
③f(x)•g(x);
④f(g(x));
⑤g(f(x)).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,且$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=$\frac{1}{2}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知Sn是数列{an}的前n项和,且a1=1,nan+1=2Sn(n∈N*).
(1)求a2,a3,a4的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.数列1,$\frac{1}{2}$,$\frac{2}{1},\frac{1}{3},\frac{2}{2},\frac{3}{1},\frac{1}{4},\frac{2}{3},\frac{3}{2},\frac{4}{1},…$中第50个数是(  )
A.$\frac{7}{4}$B.$\frac{4}{7}$C.$\frac{6}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=lnx,g(x)=$\frac{1}{2}{x}^{2}-1$,若方程f(1+x2)-g(x)=k有三个根,求满足条件的实数k的取值是1.

查看答案和解析>>

同步练习册答案