精英家教网 > 高中数学 > 题目详情
11.在△ABC中,tan$\frac{A}{2}$+tan$\frac{B}{2}$=1,则tan$\frac{C}{2}$的取值范围为[$\frac{3}{4}$,1).

分析 利用条件诱导公式、两角和差的正切公式求得1-tan$\frac{A}{2}$•tan$\frac{B}{2}$=tan$\frac{C}{2}$,再根据tan$\frac{A}{2}$、tan$\frac{B}{2}$均为正数以及基本不等式,求得tan$\frac{C}{2}$的范围.

解答 解:△ABC中,∵tan$\frac{A}{2}$+tan$\frac{B}{2}$=tan($\frac{A}{2}$+$\frac{B}{2}$)•(1-tan$\frac{A}{2}$•tan$\frac{B}{2}$)
=tan$\frac{π-C}{2}$•(1-tan$\frac{A}{2}$•tan$\frac{B}{2}$)=cot$\frac{C}{2}$•(1-tan$\frac{A}{2}$•tan$\frac{B}{2}$)=1,
∴1-tan$\frac{A}{2}$•tan$\frac{B}{2}$=tan$\frac{C}{2}$.
∵∵tan$\frac{A}{2}$+tan$\frac{B}{2}$=1,∴tan$\frac{A}{2}$、tan$\frac{B}{2}$均为正数,
∴tan$\frac{A}{2}$•tan$\frac{B}{2}$>0,∴tan$\frac{C}{2}$=1-tan$\frac{A}{2}$•tan$\frac{B}{2}$<1,即 tan$\frac{C}{2}$<1.
∵tan$\frac{A}{2}$+tan$\frac{B}{2}$=1,∴1=tan$\frac{A}{2}$+1tan$\frac{B}{2}$≥2$\sqrt{tan\frac{A}{2}•tan\frac{B}{2}}$,
当且仅当tan$\frac{A}{2}$=tan$\frac{B}{2}$=$\frac{1}{2}$时,等号成立,
∴tan$\frac{A}{2}$•tan$\frac{B}{2}$$≤\frac{1}{4}$,∴tan$\frac{C}{2}$=1-tan$\frac{A}{2}$•tan$\frac{B}{2}$≥$\frac{3}{4}$.
综上可得,tan$\frac{C}{2}$∈[$\frac{3}{4}$,1),
故答案为:[$\frac{3}{4}$,1).

点评 本题主要考查诱导公式、两角和差的正切公式,基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知$\overrightarrow a$,$\overrightarrow b$满足|${\overrightarrow a}$|=3,|${\overrightarrow b}$|=2$\sqrt{3}$,$\overrightarrow a$•$\overrightarrow b$=-9,则$\overrightarrow b$在$\overrightarrow a$方向上的投影为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知tanα=2,则$\frac{3sinα+2cosα}{sinα-cosα}$的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若A(-2,1),B(3,-2),C($\frac{1}{2}$,m)三点共线,则m的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{6}}}{3}$,以M(1,0)为圆心,椭圆的短半轴长为半径的圆与直线x-y+$\sqrt{2}$-1=0相切.
(1)求椭圆C的标准方程;
(2)已知点,N(3,2),和面内一点P(m,n)(m≠3),过点M任作直线l与椭圆C相交于A,B两点,设直线AN,NP,BN的斜率分别为k1,k2,k3,若k1+k3=2k2,试求m,n满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若角α是锐角,则sinα+cosα+$\frac{2\sqrt{2}}{sin(α+\frac{π}{4})}$的最小值是3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,已知角A,B,C所对的边分别是a,b,c,边c=$\frac{7}{2}$,且tanA+tanB=$\sqrt{3}$tanA•tanB-$\sqrt{3}$,又△ABC的面积为S△ABC=$\frac{{3\sqrt{3}}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a=2${\;}^{-\frac{1}{3}}$,b=log35,c=cos100°,则(  )
A.a>b>cB.b>a>cC.a>c>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知tan(α+$\frac{π}{3}$)=2,则$\frac{sin(α+\frac{4π}{3})+cos(\frac{2π}{3}-α)}{cos(\frac{π}{6}-α)-sin(α+\frac{5π}{6})}$=-3.

查看答案和解析>>

同步练习册答案