精英家教网 > 高中数学 > 题目详情
19.若A(-2,1),B(3,-2),C($\frac{1}{2}$,m)三点共线,则m的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\sqrt{2}$D.2

分析 根据经过两点的直线斜率的公式,分别计算出直线AB与直线AC的斜率,而A、B、C三点共线,故直线AB与直线AC的斜率相等,由此建立关于m的方程,解之即可得到实数m的值.

解答 解:∵A(-2,1),B(3,-2),
∴直线AB的斜率k1=$\frac{1+2}{-2-3}$=-$\frac{3}{5}$
同理可得:直线AC的斜率k2=$\frac{m-1}{\frac{1}{2}+2}$
∵A、B、C三点共线,直线AC的斜率
∴直线AB与直线AC的斜率相等,即k1=k2
得$\frac{m-1}{\frac{1}{2}+2}$=-$\frac{3}{5}$,解之得m=-$\frac{1}{2}$.
故选B.

点评 本题给出三点共线,求参数m的值,着重考查了利用直线斜率公式解决三点共线的知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设a,b∈R,且a+b=4,则3a+3b的最小值为(  )
A.6B.18C.27D.81

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知△ABC中,内角A,B,C所对边长分别为a,b,c,若A=$\frac{π}{3}$,b=2acosB,c=1,
(1)求角B的大小.
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.△ABC中,已知AB=2,BC=4,∠B的平分线BD=$\sqrt{6}$,则AC边上的中线BE=$\frac{\sqrt{31}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=x-1-$\frac{lnx}{x}$的最小值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如果某射手每次射击击中目标的概率为0.74,每次射击的结果相互独立,那么他在10次射击中,最有可能击中目标几次(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,tan$\frac{A}{2}$+tan$\frac{B}{2}$=1,则tan$\frac{C}{2}$的取值范围为[$\frac{3}{4}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x+m|+|x-$\frac{1}{m}}$|,其中m>0.
(1)当m=1时,解不等式f(x)≤4;
(2)若a∈R,且a≠0,证明:f(-a)+f(${\frac{1}{a}}$)≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某高校从5名男大学生志愿者和4名女大学生志愿者中选出3名派到3所学校支教(每所学校一名志愿者),要求这3名志愿者中男、女大学生都有,则不同的选派方案共有(  )
A.210种B.420种C.630种D.840种

查看答案和解析>>

同步练习册答案