精英家教网 > 高中数学 > 题目详情

【题目】已知函数时都取得极值;

(1)求的值与函数的单调区间;

(2)若对,不等式恒成立,求的取值范围

【答案】1ab=-2递增区间是(-,- )与(1,+)递减区间是(-1)(2c-1或c2

【解析】 试题分析:(1)根据极值定义得f)=0f1=0解方程组可得的值,再列表根据导函数符号确定单调区间(2)不等式恒成立问题一般转化为对应函数最值问题:fx最大值c2根据(1)可得fx最大值为f2),解不等式可得的取值范围

试题解析:解:(1)fx)=x3ax2bxcfx)=3x22axb

f)=f1)=32ab0

ab=-2

fx)=3x2-x-2=(3x+2)(x-1),函数fx的单调区间如下表:

x

(-,-

(-1

1

1,+

fx

0

0

fx

极大值

极小值

所以函数f(x)的递增区间是(-,- )与(1,+

递减区间是(-1

2fx)=x3x22xcx〔-1,2〕,当x=-时,fx)=c

为极大值,而f2=2+c,则f2=2+c为最大值。

要使fxc2x〔-1,2〕)恒成立,只需c2f2)=2c

解得c-1或c2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知圆心坐标为( ,1)的圆M与x轴及直线y= x分别相切于A,B两点,另一圆N与圆M外切、且与x轴及直线y= x分别相切于C、D两点.
(1)求圆M和圆N的方程;
(2)过点B作直线MN的平行线l,求直线l被圆N截得的弦的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若ABC的三个顶点的坐标分别为A(4,0),B(6,7),C(0,3).
①求BC边上的高所在直线的方程;
②求BC边上的中线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市对创“市级优质学校”的甲、乙两所学校复查验收,对办学的社会满意度一项评价随机访问了位市民,根据这位市民对这两所学校的评分(评分越高表明市民的评价越好),绘制茎叶图如下:

(1)分别估计该市的市民对甲、乙两所学校评分的中位数;

(2)分别估计该市的市民对甲、乙两所学校的评分不低于分的概率;

(3)根据茎叶图分析该市的市民对甲、乙两所学校的评价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了对新研发的一批产品进行合理定价,将产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:

已知

(1)求的值

(2)已知变量具有线性相关性,求产品销量关于试销单价的线性回归方程 可供选择的数据

(3)用表示(2)中所求的线性回归方程得到的与对应的产品销量的估计值。当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”。试求这6组销售数据中的 “好数据”。

参考数据:线性回归方程中的最小二乘估计分别是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明同学在寒假社会实践活动中,对白天平均气温与某家奶茶店的品牌饮料销量之间的关系进行了分析研究,他分别记录了1月11日至1月15日的白天气温)与该奶茶店的品牌饮料销量(杯),得到如表数据:

日期

1月11号

1月12号

1月13号

1月14号

1月15号

平均气温

9

10

12

11

8

销量(杯)

23

25

30

26

21

(1)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;

(2)请根据所给五组数据,求出关于的线性回归方程式

(3)根据(2)所得的线性回归方程,若天气预报1月16号的白天平均气温为,请预测该奶茶店这种饮料的销量.

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C(﹣4,0),D(0,4)设△AOB的外接圆圆心为E.

(1)若⊙E与直线CD相切,求实数a的值;
(2)设点P在圆E上,使△PCD的面积等于12的点P有且只有三个,试问这样的⊙E是否存在,若存在,求出⊙E的标准方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的侧棱PD⊥底面ABCD,且底面ABCD是直角梯形,AD⊥CD,AB∥CD,AB=AD= CD=2,点M在侧棱上.
(1)求证:BC⊥平面BDP;
(2)若侧棱PC与底面ABCD所成角的正切值为 ,点M为侧棱PC的中点,求异面直线BM与PA所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4﹣5:不等式选讲)
已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=﹣2时,求不等式f(x)<g(x)的解集;
(2)设a>﹣1,且当 时,f(x)≤g(x),求a的取值范围.

查看答案和解析>>

同步练习册答案