精英家教网 > 高中数学 > 题目详情
(2012•北京模拟)(2007广州市水平测试)已知等差数列{an}的前n项和为Sn,a2=2,S5=0.
(1)求数列{an}的通项公式;
(2)当n为何值时,Sn取得最大值.
分析:(1)由题意可得,
a1+d=2
5a1+
5×4d
2
=0
,可求a1,d,进而可求通项
(2)由等差数列的求和公式可得Sn=na1+
n(n-1)d
2
=4n-n(n-1)
=-n2+5n=-(n-
5
2
)2
25
4
,利用二次函数的性质可求和的最大值
解答:解:(1)∵a2=2,S5=0,
a1+d=2
5a1+
5×4d
2
=0

解得a1=4,d=-2.
∴an=4+(n-1)×(-2)=6-2n.
(2)Sn=na1+
n(n-1)d
2
=4n-n(n-1)
=-n2+5n=-(n-
5
2
)2
25
4

∵n∈N*
∴当n=2或n=3时,Sn取得最大值6.
点评:本小题主要考查等差数列、等差数列前n项和公式等基础知识,考查运算求解能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•北京模拟)已知a、b、c、d是公比为2的等比数列,则
2a+b
2c+d
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)函数y=
log
2
3
(3x-2)
的定义域为
2
3
,1]
2
3
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)如图,在四棱锥P-ABCD中,PA⊥平面AC,且四边形ABCD是矩形,则该四棱锥的四个侧面中是直角三角形的有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)在数列{an}中,a1=
3
an+1=
1+
a
2
n
-1
an
(n∈N*)
.数列{bn}满足0<bn
π
2
,且 an=tanbn(n∈N*).
(1)求b1,b2的值;
(2)求数列{bn}的通项公式;
(3)设数列{bn}的前n项和为Sn.若对于任意的n∈N*,不等式Sn≥(-1)nλbn恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)甲、乙、丙、丁四个人进行传球练习,每次球从一个人的手中传入其余三个人中的任意一个人的手中.如果由甲开始作第1次传球,经过n次传球后,球仍在甲手中的所有不同的传球种数共有an种.
(如,第一次传球模型分析得a1=0.)
(1)求 a2,a3的值;
(2)写出 an+1与 an的关系式(不必证明),并求 an=f(n)的解析式;
(3)求 
anan+1
的最大值.

查看答案和解析>>

同步练习册答案