精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2ln|x|,
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的单调区间;
(3)若关于x的方程f(x)=kx-1有实数解,求实数k的取值范围。
解:(1)函数f(x)的定义域为{x|x∈R且x≠0},
又f(-x)=(-x)2ln|-x|=x2ln|x|=f(x),
所以f(x)为偶函数.
(2)当x>0时,
,则f′(x)<0,f(x)递减;
,则f′(x)>0,f(x)递增,
再由f(x)是偶函数,得f(x)的单调增区间是
单调减区间是
(3)要使方程f(x)=kx-1有实数解,即要使函数y=f(x)的图象与直线y=kx-1有交点,
函数f(x)的图象如图,先求当直线y=kx-1与f(x)的图象相切时k的值.
当x>0时,f′(x)=x·(2·lnx+1),
设切点为P(a,f(a)),则切线方程为y-f(a)=f′(a)(x-a),
将x=0,y=-1代入,得-1-f(a)=f′(a)(-a),
,(*)
显然,a=1满足(*).
而当0<a<1时,
当a>1时,
所以(*)有唯一解a=1,此时k=f′(1)=1,
再由对称性,k=-1时,y=kx-1也与f(x)的图象相切,
所以若方程f(x)=kx-1有实数解,则实数k的取值范围是(-∞,-1]∪[1,+∞)。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案