精英家教网 > 高中数学 > 题目详情
已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x,

(1)求函数g(x)的解析式;

(2)解不等式g(x)≥f(x)-|x-1|;

(3)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.

解析:此题考查综合应用函数的奇偶性和增减性解决解析式和最值问题.

解:(1)设函数y=f(x)的图象上任一点Q(x0,y0)关于原点的对称点为P(x,y),?

∵点Q(x0,y0)在函数y=f(x)的图象上,?

∴-y=x2-2x,即y=-x2+2x.?

故g(x)=-x2+2x.?

(2)由g(x)≥f(x)-|x-1|,可得2x2-|x-1|≤0.?

当x≥1时,2x2-x+1≤0.?

此时不等式无解.?

当x<1时,2x2-x+1≤0.?

∴-1≤x≤.?

因此,原不等式的解集为[-1, ].?

(3)h(x)=-(1+λ)x2+2(1-λ)x+1.?

①当λ=-1时,h(x)=4x+1在[-1,1]上是增函数,∴λ=-1.?

②当λ≠-1时,对称轴的方程为x=.

(ⅰ)当λ<-1时,≤-1,解得λ<-1.

(ⅱ)当λ>-1时,≥1时,解得-1<λ≤0.?

综上,λ≤0.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.

(1)求函数g(x)的解析式;

(2)解不等式g(x)≥f(x)-|x-1|;

(3)(文)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)分别由下表给出定义:

x

1

2

3

f(x)

2

________

3

x

1

2

3

g(x)

3

________

1

若方程f(g(x))=g(f(x))的解恰有2个,请在表中横线上填上合适的数.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省高三上学期期中考试文科数学试卷(解析版) 题型:解答题

已知函数f(x)和g(x)的图象关于原点对称,且

(1)求函数g(x)的解析式;

(2)解不等式

(3)若在[-1,1]上是增函数,求实数的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:新课标高三数学函数的图象奇偶性、周期性专项训练(河北) 题型:解答题

已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.

(1)求函数g(x)的解析式;

(2)解不等式g(x)≥f(x)-|x-1|;

(3)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围

 

查看答案和解析>>

同步练习册答案