精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3-
1
2
(2a+1)x2+(a2+a)x

(1)若函数h(x)=
f′(x)
x
为奇函数,求a的值;
(2)若函数f(x)在x=1处取得极大值,求实数a的值;
(3)若a≥0,求f(x)在区间[0,1]上的最大值.
分析:(1)利用导数的运算法则和函数的奇偶性即可得出;
(2)利用导数研究函数的单调性极值即可得出;
(3)对a分类讨论,利用导数研究函数的单调性即可得出.
解答:解:(1)∵f′(x)=x2-(2a+1)x+(a2+a),
h(x)=
x2-(2a+1)x+(a2+a)
x

∵h(x)为奇函数,
∴f′(x)=x2-(2a+1)x+(a2+a)为偶函数,即2a+1=0,
a=-
1
2

(2)∵f′(x)=x2-(2a+1)x+(a2+a)=(x-a)[x-(a+1)],
令f'(x)=0,得x1=a+1,x2=a,
∴f'(x),f(x)随x的变化情况如下表:
x (-∞,a) a (a,a+1) a+1 (a+1,+∞)
f'(x) + 0 - 0 +
f(x)f 极大值 极小值
∴a=1.
(3)∵a>-1,∴a+1>0,
当a≥1时,f'(x)≥0对x∈[0,1]成立,
∴当x=1时,f(x)取得最大值f(1)=a2-
1
6

当0<a<1时,在x∈(0,a),f'(x)>0,f(x)单调递增,在x∈(a,1)时,f'(x)<0,f(x)单调递减,
∴当x=a时,f(x)取得最大值f(a)=
1
3
a3+
1
2
a2

当a=0时,在x∈(0,1),f'(x)<0,f(x)单调递减,
∴当x=0时,f(x)取得最大值f(0)=0;
综上所述,当a≥1时,f(x)在x=1取得最大值f(1)=a2-
1
6

当0≤a<1时,f(x)取得最大值f(a)=
1
3
a3+
1
2
a2
点评:本题考查了利用导数研究函数的单调性极值、分类讨论、函数的奇偶性等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案