精英家教网 > 高中数学 > 题目详情

【题目】某学校为了了解该校学生对于某项运动的爱好是否与性别有关,通过随机抽查110名学生,得到如下2×2的列联表:

喜欢该项运动

不喜欢该项运动

总计

40

20

60

20

30

50

总计

60

50

110

由公式K2= ,算得K2≈7.61
附表:

p(K2≥k0

0.025

0.01

0.005

k0

5.024

6.635

7.879

参照附表,以下结论正确是(
A.有99.5%以上的把握认为“爱好该项运动与性别有关”
B.有99.5%以上的把握认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”

【答案】C
【解析】解:由题意知本题所给的观测值,K2≈7.61>6.635,

∴这个结论有0.010的机会出错,

即有99%以上的把握认为“爱好体育运动与性别有关”.

故选:C.

根据条件中所给的观测值,同题目中节选的观测值表进行检验,得到观测值对应的结果,得到结论有99%以上的把握认为“爱好该项运动与性别有关”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为2,4,4.现从这10人中随机选出2人作为该组代表参加座谈会. (I)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;
(II)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+m|+|2x﹣1|(m∈R).
(1)当m=﹣1时,求不等式f(x)≤2的解集;
(2)设关于x的不等式f(x)≤|2x+1|的解集为A,且[1,2]A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的一个顶点为A(2,3),两条高所在直线方程为x-2y+3=0和xy-4=0,求△ABC三边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的编号为003.600名学生分住在3个营区,001300住在第1营区,301495住在第2营区,496600住在第3营区,3个营区被抽中的人数依次为(  )

A. 26,16,8 B. 25,16,9

C. 25,17,8 D. 24,17,9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法: ①分类变量A与B的随机变量K2越大,说明“A与B有关系”的可信度越大.
②以模型y=cekx去拟合一组数据时,为了求出回归方程,设z=lny,将其变换后得到线性方程z=0.3x+4,则c,k的值分别是e4和0.3.
③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y=a+bx中,b=1, =1, =3,
则a=1.正确的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,已知

1)求证:

2)设上一点,试确定的位置,使平面,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且,若时,有成立.

(Ⅰ)判断上的单调性,并证明;

(Ⅱ)解不等式

(Ⅲ)若对所有的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在 上的单调递减函数 ,若 的导函数存在且满足 ,则下列不等式成立的是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案