精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x2-ax)e-x(a∈R)。
(1)当a=2时,求函数f(x)的单调递减区间;
(2)若函数f(x)在(-1,1)上单调递减,求a的取值范围;
(3)函数f(x)可否为R上的单调函数,若是,求出a的取值范围,若不是,请说明理由.
解:(1)当a=2时,


,∴
∴函数f(x)的单调递减区间是
(2)
∵f(x)在(-1,1)上单调递减,∴x∈(-1,1)时,恒成立,
即x∈(-1,1)时,恒成立,
对一切x∈(-1,1)恒成立,

在(-1,1)上是增函数,

即a的取值范围是
(3)∵


∴x∈R时,t不恒为正值,也不恒为负值,
的值不恒正,也不恒负,
故f(x)在R上不可能单调。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案