精英家教网 > 高中数学 > 题目详情
16.给出程序框图如图所示,若输入n=20,则输出S=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.0D.-$\frac{\sqrt{3}}{2}$

分析 模拟执行程序框图,可得程序的功能是求
S=sin($\frac{π}{2}$+$\frac{π}{6}$)+sin(π+$\frac{π}{6}$)+…+sin($\frac{19π}{2}$+$\frac{π}{6}$)的值,
根据三角函数的周期性计算结果即可.

解答 解:模拟执行程序框图,可得程序框图的功能是求
S=sin($\frac{π}{2}$+$\frac{π}{6}$)+sin(π+$\frac{π}{6}$)+…+sin($\frac{19π}{2}$+$\frac{π}{6}$)的值,
∴S=cos$\frac{π}{6}$-sin$\frac{π}{6}$-cos$\frac{π}{6}$+sin$\frac{π}{6}$+…+cos$\frac{π}{6}$-sin$\frac{π}{6}$-cos$\frac{π}{6}$,
其取值是以4为周期的函数,且一个周期内的和为0,
∴S=cos$\frac{π}{6}$-sin$\frac{π}{6}$-cos$\frac{π}{6}$=-$\frac{1}{2}$.
故选:A.

点评 本题考查了循环结构的程序框图应用问题,也考查了正弦函数的周期性,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设p:实数x满足x2-4ax+3a2<0(其中a>0),q:2<x≤3.若p是q的必要不充分条件,则实数a的取值范围是(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于常数m、n,“mn<0”是“方程mx2+ny2=10的曲线是双曲线”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知AD为△ABC边BC的中线,且$\overrightarrow{AB}•\overrightarrow{AC}=-16,|{\overrightarrow{BC}}|=10$,则$|{\overrightarrow{AD}}|$=(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$f(x)=sin(ωx+ϕ)(ω>0,|ϕ|<\frac{π}{2})$的最小正周期为π,若其图象向左平移$\frac{π}{3}$个单位后关于y轴对称,则(  )
A.$ω=2,ϕ=\frac{π}{3}$B.$ω=2,ϕ=\frac{π}{6}$C.$ω=4,ϕ=\frac{π}{6}$D.$ω=2,ϕ=-\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F,且点F到双曲线的一条渐近线的距离为$\sqrt{3}$,若点P(2,$\sqrt{3}$)在该双曲线上,则该双曲线的离心率为(  )
A.$\frac{\sqrt{6}}{2}$B.$\frac{\sqrt{10}}{2}$C.$\frac{5}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.韩国民意调查机构“盖洛普韩国”2016年11月公布的民调结果显示,受“闺蜜门”时间影响,韩国总统朴槿惠的民意支持率持续下跌,在所调查的1000个对象中,年龄在[20,30)的群体有200人,支持率为0%,年龄在[30,40)和[40,50)的群体中,支持率均为3%;年龄在[50,60)和[60,70)的群体中,支持率分别为6%和13%,若在调查的对象中,除[20,30)的群体外,其余各年龄层的人数分布情况如频率分布直方图所示,其中最后三组的频数构成公差为100的等差数列.
(1)依频率分布直方图求出图中各年龄层的人数
(2)请依上述支持率完成下表:
                 年龄分布
是否支持
[30,40)和[40,50)[50,60)和[60,70) 合计
 支持152540
 不支持485275760
 合计500 300 800 
根据表中的数据,能否在犯错误的概率不超过0.001的前提下认为年龄与支持率有关?
附表:
 P(K2≥k) 0.150.10  0.05 0.0250.010 0.005 0.001 
 k 2.0722.076 3.841 5.024 6.635 7.879 10.828 
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d    参考数据:125×33=15×275,125×97=25×485)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点P是锐角△ABC所在平面内的动点,且满足$\overrightarrow{CP}•\overrightarrow{CB}=\overrightarrow{CA}•\overrightarrow{CB}$,给出下列四个命题:
①点P的轨迹是一条直线;
②$|\overrightarrow{CP}|=|\overrightarrow{CA}|$恒成立;
③$|\overrightarrow{CP}|≥|\overrightarrow{CA}|cosC$;
④存在点P使得$|\overrightarrow{PC}+\overrightarrow{PB}|=|\overrightarrow{CB}|$.
则其中真命题的序号为(  )
A.①②B.③④C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{a^x},x≥0\\ kx+1,x<0\end{array}$,且0<a<1,k≠0,若函数g(x)=f(x)-k有两个零点,则实数k的取值范围为(0,1).

查看答案和解析>>

同步练习册答案