精英家教网 > 高中数学 > 题目详情
11.已知$f(x)=sin(ωx+ϕ)(ω>0,|ϕ|<\frac{π}{2})$的最小正周期为π,若其图象向左平移$\frac{π}{3}$个单位后关于y轴对称,则(  )
A.$ω=2,ϕ=\frac{π}{3}$B.$ω=2,ϕ=\frac{π}{6}$C.$ω=4,ϕ=\frac{π}{6}$D.$ω=2,ϕ=-\frac{π}{6}$

分析 利用函数的周期求出ω,然后根据函数的平移法则求出函数的图象平移后的函数,然后由已知的图象关于Y轴对称,求出φ,得到结果.

解答 解:∵由题意函数的周期是π,
∴$\frac{2π}{ω}$=π,
∴ω=2,
∵函数的图象向左平移$\frac{π}{3}$个单位后得到y=sin(2x+$\frac{2π}{3}$+φ)的图象关于y轴对称,
∴$\frac{2π}{3}$+φ=kπ+$\frac{π}{2}$,k∈Z.
∵|φ|<$\frac{π}{2}$,解得φ=-$\frac{π}{6}$.
∴ω=2,φ=-$\frac{π}{6}$.
故选:D.

点评 本题考查y=Asin(ωx+ϕ)的图象和性质,三角函数的左右平移一定要注意x上的变化量是解题中容易出错的地方,要引起注意,而函数的图象变换也是函数的重要知识,要熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.给出以下命题:
①若cos<$\overrightarrow{MN}$,$\overrightarrow{PQ}$>=-$\frac{1}{3}$,则异面直线MN与PQ所成角的余弦值为-$\frac{1}{3}$;
②若平面α与β的法向量分别是$\overrightarrow a=(2,4,-3)$与$\overrightarrow b=(-1,2,2)$,则平面α⊥β;
③已知A、B、C三点不共线,点O为平面ABC外任意一点,若点M满足$\overrightarrow{OM}=\frac{1}{5}\overrightarrow{OA}+\frac{4}{5}\overrightarrow{OB}+\frac{2}{5}\overrightarrow{BC}$,则点M∈平面ABC;
④若向量$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是空间的一个基底,则向量$\overrightarrow a+\overrightarrow b+\overrightarrow c$、$\overrightarrow a+\overrightarrow b$、$\overrightarrow c$也是空间的一个基底;
则其中正确的命题个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|log4x<$\frac{3}{2}$},B={6,7,8,9,10},则A∩B的子集个数是(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数$f(x)=\frac{{3-{x^2}}}{e^x}$在区间(m,m+2)上单调递减,则实数m的取值范围为[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.我们知道:在平面内,点(x0,y0)到直线Ax+By+C=0的距离公式为$d=\frac{{|{A{x_0}+B{y_0}+C}|}}{{\sqrt{{A^2}+{B^2}}}}$,通过类比的方法,可求得:在空间中,点(2,4,1)到平面x+2y+2z+3=0的距离为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给出程序框图如图所示,若输入n=20,则输出S=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.0D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=3,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{3}{2}$,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\frac{3\sqrt{6}}{2}$,则向量$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设变量x,y满足约束条件$\left\{\begin{array}{l}2x+y≤2\\ x+y≥-1\\ y≤x\end{array}\right.$,则目标函数z=2x-y的最大值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C1:(x-1)2+y2=$\frac{1}{2}$与圆C2的公切线是直线y=x和y=-x,且两圆的圆心距是3,求圆C2的方程.

查看答案和解析>>

同步练习册答案