精英家教网 > 高中数学 > 题目详情
已知函数f(x)=21nx与g(x)=a2x2+ax+1(a>0).
(1)设直线x=l与曲线y=f(x)和y=g(x)分别相交于点P,Q且曲线y=f(x)和y=g(x)在点P,Q处的切线平行,求实数a的值;
(2)f′(x)为f(x)的导函数,若对于任意的x∈(0,+∞),e
1f(x)
-mx≥0恒成立,求实数m的最大值.
分析:(1)先求出f′(1),再利用曲线y=f(x)和y=g(x)在点P,Q处的切线平行,可得f′(1)=g′(1),从而可求实数a的值;
(2)先分离参数,再构造函数求最值,即可求得结论.
解答:解:(1)∵f′(x)=
2
x
,∴f′(1)=2,
∵g′(x)=2a2x+a,曲线y=f(x)和y=g(x)在点P,Q处的切线平行,
∴g′(1)=2
∴2a2+a=2
∴a=
-1±2
5
4

∵a>0,∴a=
-1+2
5
4

(2)∵f′(x)=
2
x
,∴e
1
f(x)
-mx≥0等价于e
x
2
-mx≥0

∵x>0,∴m≤
e
x
2
x

构造函数g(x)=
e
x
2
x
,则g′(x)=
e
x
2
(
x
2
-1)
x2

当x∈(0,2)时,g′(x)<0,函数单调减;当x∈(2,+∞)时,g′(x)>0,函数单调增
∴x=2时,函数g(x)=
e
x
2
x
取得最小值
e
2

∴对于任意的x∈(0,+∞),e
1
f(x)
-mx≥0恒成立时,m≤
e
2

∴实数m的最大值为
e
2
点评:本题考查导数知识的运用,考查导数的几何意义,考查恒成立问题,解题的关键是分离参数,利用导数确定函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案