精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2=1,点P(x,y)在直线x-y-2=0上,O为坐标原点,若圆C上存在点Q,使∠OPQ=30°,则x的取值范围是( )
A.[-1,1]
B.[0,1]
C.[-2,2]
D.[0,2]
【答案】分析:根据圆的切线的性质,可知当过P点作圆的切线,切线与OP所成角是圆上的点与OP所成角的最大值,所以只需此角大于等于30°即可,此时半径,切线与OP构成直角三角形,因为切线与OP所成角大于等于30°所以OP小于等于半径的2倍,再用含x的式子表示OP,即可求出x的取值范围.
解答:解:过P作⊙C切线交⊙C于R,根据圆的切线性质,有∠OPR≥∠OPQ=30°.
反过来,如果∠OPR≥30°,则存在⊙C上点Q使得∠OPQ=30°.
∴若圆C上存在点Q,使∠OPQ=30°,则∠OPR≥30°
∵|OR|=1,∴|OP|>2时不成立,∴|OP|≤2.
∵|OP|2=x2+y2=x2+(x-2)2=2x2-4x+2
∴2x2-4x+2≤2,解得,0≤x2≤2∴x的取值范围是[0,2]
故选D
点评:本题主要考查了直线与圆相切时切线的性质,以及一元二次不等式的解法,综合考察了学生的转化能力,计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)一个圆与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截得的弦长为2
7
,求此圆方程.
(2)已知圆C:x2+y2=9,直线l:x-2y=0,求与圆C相切,且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)已知圆C:x2+y2=r2(r>0)与抛物线y2=40x的准线相切,若直线l:
x
a
y
b
=1
与圆C有公共点,且公共点都为整点(整点是指横坐标.纵坐标都是整数的点),那么直线l共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4与直线L:x+y+a=0相切,则a=(  )

查看答案和解析>>

同步练习册答案