【题目】已知是满足下列性质的所有函数组成的集合:对任何(其中为函数的定义域),均有成立.
(1)已知函数,,判断与集合的关系,并说明理由;
(2)是否存在实数,使得,属于集合?若存在,求的取值范围,若不存在,请说明理由;
(3)对于实数、 ,用表示集合中定义域为区间的函数的集合.
定义:已知是定义在上的函数,如果存在常数,对区间的任意划分:,和式恒成立,则称为上的“绝对差有界函数”,其中常数称为的“绝对差上界”,的最小值称为的“绝对差上确界”,符号;求证:集合中的函数是“绝对差有界函数”,并求的“绝对差上确界”.
科目:高中数学 来源: 题型:
【题目】如图放置的边长为2的正三角形ABC沿x轴滚动,记滚动过程中顶点A的横、纵坐标分别为和,且是在映射作用下的象,则下列说法中:
① 映射的值域是;
② 映射不是一个函数;
③ 映射是函数,且是偶函数;
④ 映射是函数,且单增区间为,
其中正确说法的序号是___________.
说明:“正三角形ABC沿x轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点B为中心顺时针旋转,当顶点C落在x轴上时,再以顶点C为中心顺时针旋转,如此继续.类似地,正三角形ABC可以沿x轴负方向滚动.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥中,底面为直角梯形,,,,,,且平面平面.
(1)求证:;
(2)在线段上是否存在一点,使二面角的大小为,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系上,有一点列P0 , P1 , P2 , P3 , …,Pn﹣1 , Pn , 设点Pk的坐标(xk , yk)(k∈N,k≤n),其中xk、yk∈Z,记△xk=xk﹣xk﹣1 , △yk=yk﹣yk﹣1 , 且满足|△xk||△yk|=2(k∈N* , k≤n);
(1)已知点P0(0,1),点P1满足△y1>△x1>0,求P1的坐标;
(2)已知点P0(0,1),△xk=1(k∈N* , k≤n),且{yk}(k∈N,k≤n)是递增数列,点Pn在直线l:y=3x﹣8上,求n;
(3)若点P0的坐标为(0,0),y2016=100,求x0+x1+x2+…+x2016的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知平面 平面, 与分别是棱长为1与2的正三角形, // ,四边形为直角梯形, // , ,点为的重心, 为中点, .
(Ⅰ)当时,求证: //平面;
(Ⅱ)若直线与所成角为,试求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】.函数f(x)=ex+x2+x+1与g(x)的图象关于直线2x﹣y﹣3=0对称,P,Q分别是函数f(x),g(x)图象上的动点,则|PQ|的最小值为__
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为.
(1)设为参数,若,求直线的参数方程;
(2)已知直线与曲线交于,设,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为,上顶点为,若直线的斜率为1,且与椭圆的另一个交点为, 的周长为.
(1)求椭圆的标准方程;
(2)过点的直线(直线的斜率不为1)与椭圆交于两点,点在点的上方,若,求直线的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com