精英家教网 > 高中数学 > 题目详情

【题目】.函数fx=ex+x2+x+1gx)的图象关于直线2x﹣y﹣3=0对称,PQ分别是函数fx),gx)图象上的动点,则|PQ|的最小值为__

【答案】2

【解析】f(x)=ex+x2+x+1,

f′(x)=ex+2x+1,

∵函数f(x)的图象与g(x)关于直线2x﹣y﹣3=0对称,

∴函数f(x)到直线的距离的最小值的2倍,即可|PQ|的最小值.

直线2x﹣y﹣3=0的斜率k=2,

f′(x)=ex+2x+1=2,

ex+2x﹣1=0,

解得x=0,

此时对于的切点坐标为(0,2),

∴过函数f(x)图象上点(0,2)的切线平行于直线y=2x﹣3,

两条直线间距离d就是函数f(x)图象到直线2x﹣y﹣3=0的最小距离,

此时d==

由函数图象的对称性可知,|PQ|的最小值为2d=2

故答案为:2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,以椭圆长、短轴四个端点为顶点为四边形的面积为.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图所示,记椭圆的左、右顶点分别为,当动点在定直线上运动时,直线分别交椭圆于两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆焦距为2,离心率.

求椭圆的标准方程

过点作圆的切线切点分别为直线轴交于点过点的直线交椭圆两点关于轴的对称点为的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 其中是常数且,若的最小值是,满足条件的点是椭圆一弦的中点,则此弦所在的直线方程为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是满足下列性质的所有函数组成的集合:对任何其中为函数的定义域),均有成立.

(1)已知函数判断与集合的关系,并说明理由;

(2)是否存在实数,使得属于集合?若存在,求的取值范围,若不存在,请说明理由;

(3)对于实数 表示集合中定义域为区间的函数的集合.

定义:已知是定义在上的函数,如果存在常数对区间的任意划分:和式恒成立,则称上的“绝对差有界函数”,其中常数称为的“绝对差上界”,的最小值称为的“绝对差上确界”,符号求证:集合中的函数是“绝对差有界函数”,并求的“绝对差上确界”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 +y2=1,A,B,C,D为椭圆上四个动点,且AC,BD相交于原点O,设A(x1 , y1),B(x2 , y2)满足 =
(1)求证: + =
(2)kAB+kBC的值是否为定值,若是,请求出此定值,并求出四边形ABCD面积的最大值,否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为矩形,四边形为直角梯形,.

(1)求证:

(2)求证:平面

(3)若二面角的大小为,求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,则函数g(x)=f(f(x))﹣2在区间(﹣1,3]上的零点个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<ex的解集为(
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(4,+∞)

查看答案和解析>>

同步练习册答案