【题目】已知
,
其中
是常数且
,若
的最小值是
,满足条件的点
是椭圆
一弦的中点,则此弦所在的直线方程为( )
A.
B.
C.
D. ![]()
科目:高中数学 来源: 题型:
【题目】我市“金牛”公园欲在长、宽分别为
、
的矩形地块内开凿一“挞圆”形水池(如图),池边由两个半椭圆
和
(
)组成,其中
,“挞圆”内切于矩形且其左右顶点
,
和上顶点
构成一个直角三角形
.
![]()
(1)试求“挞圆”方程;
(2)若在“挞圆”形水池内建一矩形网箱养殖观赏鱼,则该网箱水面面积最大为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,其左顶点A在圆O:x2+y2=16上. (Ⅰ)求椭圆W的方程;
(Ⅱ)若点P为椭圆W上不同于点A的点,直线AP与圆O的另一个交点为Q.是否存在点P,使得
?若存在,求出点P的坐标;若不存在,说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系上,有一点列P0 , P1 , P2 , P3 , …,Pn﹣1 , Pn , 设点Pk的坐标(xk , yk)(k∈N,k≤n),其中xk、yk∈Z,记△xk=xk﹣xk﹣1 , △yk=yk﹣yk﹣1 , 且满足|△xk||△yk|=2(k∈N* , k≤n);
(1)已知点P0(0,1),点P1满足△y1>△x1>0,求P1的坐标;
(2)已知点P0(0,1),△xk=1(k∈N* , k≤n),且{yk}(k∈N,k≤n)是递增数列,点Pn在直线l:y=3x﹣8上,求n;
(3)若点P0的坐标为(0,0),y2016=100,求x0+x1+x2+…+x2016的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】.函数f(x)=ex+x2+x+1与g(x)的图象关于直线2x﹣y﹣3=0对称,P,Q分别是函数f(x),g(x)图象上的动点,则|PQ|的最小值为__
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}定义为a1>0,a11=a,an+1=an+
an2 , n∈N*
(1)若a1=
(a>0),求
+
+…+
的值;
(2)当a>0时,定义数列{bn},b1=ak(k≥12),bn+1=﹣1+
,是否存在正整数i,j(i≤j),使得bi+bj=a+
a2+
﹣1.如果存在,求出一组(i,j),如果不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com