【题目】已知椭圆 的离心率为 ,其左顶点A在圆O:x2+y2=16上. (Ⅰ)求椭圆W的方程;
(Ⅱ)若点P为椭圆W上不同于点A的点,直线AP与圆O的另一个交点为Q.是否存在点P,使得 ?若存在,求出点P的坐标;若不存在,说明理由.
【答案】解:(Ⅰ)因为椭圆W的左顶点A在圆O:x2+y2=16上, 令y=0,得x=±4,所以a=4.
又离心率为 ,所以 ,所以 ,
所以b2=a2﹣c2=4,
所以W的方程为 .
(Ⅱ)法一:设点P(x1 , y1),Q(x2 , y2),设直线AP的方程为y=k(x+4),
与椭圆方程联立得 ,
化简得到(1+4k2)x2+32k2x+64k2﹣16=0,
因为﹣4为上面方程的一个根,所以 ,所以
所以 .
因为圆心到直线AP的距离为 ,
所以 ,
因为 ,
代入得到
显然 ,所以不存在直线AP,使得 .
法二:
设点P(x1 , y1),Q(x2 , y2),设直线AP的方程为x=my﹣4,
与椭圆方程联立得
化简得到(m2+4)y2﹣8my=0,由△=64m2>0得m≠0.
显然0是上面方程的一个根,所以另一个根,即 .
由 ,
因为圆心到直线AP的距离为 ,
所以 .
因为 ,
代入得到 ,
若 ,则m=0,与m≠0矛盾,矛盾,
所以不存在直线AP,使得 .
法三:假设存在点P,使得 ,则 ,得 .
显然直线AP的斜率不为零,设直线AP的方程为x=my﹣4
由 ,得(m2+4)y2﹣8my=0,
由△=64m2>0得m≠0,
所以 .
同理可得 ,
所以由 得 ,
则m=0,与m≠0矛盾,
所以不存在直线AP,使得
【解析】(Ⅰ)由题意求出a,通过离心率求出c,然后求解椭圆的标准方程.(Ⅱ)法一:设点P(x1 , y1),Q(x2 , y2),设直线AP的方程为y=k(x+4),与椭圆方程联立,利用弦长公式求出|AP|,利用垂径定理求出|oa|,即可得到结果.法二:设点P(x1 , y1),Q(x2 , y2),设直线AP的方程为x=my﹣4,与椭圆方程联立与椭圆方程联立得求出|AP|,利用垂径定理求出|oa|,即可得到结果.法三:假设存在点P,推出 ,设直线AP的方程为x=my﹣4,联立直线与椭圆的方程,利用韦达定理,推出 ,求解即可.
【考点精析】根据题目的已知条件,利用椭圆的标准方程的相关知识可以得到问题的答案,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:.
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的偶函数,且x≤0时, f(x)=-x+1
(1)求f(0),f(2);
(2)求函数f(x)的解析式;
(3)若f(a-1)<3,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,以椭圆长、短轴四个端点为顶点为四边形的面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图所示,记椭圆的左、右顶点分别为、,当动点在定直线上运动时,直线分别交椭圆于两点、,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线l1:y=k1x+1,l2:y=k2x-1,其中实数k1,k2满足k1k2+2=0. 证明:
(1)l1与l2相交;
(2)l1与l2的交点在曲线2x2+y2=1上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga (其中a>0,且a≠1).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性并给出证明;
(3)若x∈时,函数f(x)的值域是[0,1],求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,焦距为2,离心率为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点作圆的切线,切点分别为,直线与轴交于点,过点的直线交椭圆于两点,点关于轴的对称点为,求的面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com