精英家教网 > 高中数学 > 题目详情

【题目】设直线l1:y=k1x+1,l2:y=k2x-1,其中实数k1,k2满足k1k2+2=0. 证明:

(1)l1与l2相交;

(2)l1与l2的交点在曲线2x2+y2=1上.

【答案】(1)相交;(2)

【解析】

(1)利用反证法证明.假设l1与l2不相交,则l1与l2平行,有k1=k2.代入k1k2+2=0,找到矛盾.(2) 设l1与l2的交点P的坐标(x,y)满足故知x≠0,从而

代入k1k2+2=0,得,整理后,得2x2+y2=1,所以交点P在曲线2x2+y2=1上.

(1)反证法.假设l1与l2不相交,则l1与l2平行,有k1=k2.代入k1k2+2=0,得+2=0,此与k1为实数的事实相矛盾,从而k1≠k2,即l1与l2相交.

(2)l1与l2的交点P的坐标(x,y)满足故知x≠0,从而

代入k1k2+2=0,得,整理后,得2x2+y2=1,所以交点P在曲线2x2+y2=1上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,圆C的参数方程为 (θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为 . (Ⅰ)求圆C的普通方程和直线l的直角坐标方程;
(Ⅱ)设M是直线l上任意一点,过M做圆C切线,切点为A、B,求四边形AMBC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市“金牛”公园欲在长、宽分别为 的矩形地块内开凿一“挞圆”形水池(如图),池边由两个半椭圆)组成,其中,“挞圆”内切于矩形且其左右顶点 和上顶点构成一个直角三角形

(1)试求“挞圆”方程;

(2)若在“挞圆”形水池内建一矩形网箱养殖观赏鱼,则该网箱水面面积最大为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为 为过定点的两条直线.

(1)若与抛物线均无交点,且,求直线的斜率的取值范围;

(2)若与抛物线交于两个不同的点,以为直径的圆过点,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如右表:(单位:人)

几何题

代数题

总计

男同学

22

8

30

女同学

8

12

20

总计

30

20

50

附表及公式

P(k2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)经过多次测试后,甲每次解答一道几何题所用的时间在5~7分钟,乙每次解答一道几何题所用的时间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为 X,求 X的分布列及数学期望 EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,其左顶点A在圆O:x2+y2=16上. (Ⅰ)求椭圆W的方程;
(Ⅱ)若点P为椭圆W上不同于点A的点,直线AP与圆O的另一个交点为Q.是否存在点P,使得 ?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合{x|cos(πcosx)=0,x∈[0,π]}=(用列举法表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设二次函数满足条件:

(1)当,且

(2)当时,

(3)在R上的最小值为0.

求最大的m(m>1),使得存在,只要,就有

查看答案和解析>>

同步练习册答案