精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,则函数g(x)=f(f(x))﹣2在区间(﹣1,3]上的零点个数是(
A.1
B.2
C.3
D.4

【答案】C
【解析】解:∵函数f(x)=
∴当﹣1<x≤1时, <f(x)≤2,
当1<x≤3时,﹣1<x﹣2≤1,f(x)=f(x﹣2)+1=2x2+1∈( ,3];
设h(x)=f(f(x)),
当﹣1<x≤0时,h(x)= <h(x)≤2,
∴g(x)=h(x)﹣2有一个零点x=0;
当0<x≤1时,h(x)= <h(x)≤2,
∴g(x)=h(x)﹣2有一个零点x=1;
当1<x≤3时,h(x)= +1
+1<h(x)≤3g(x)有一个零点;
综上,函数g(x)在区间(﹣1,3]上有3个零点.
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,其左顶点A在圆O:x2+y2=16上. (Ⅰ)求椭圆W的方程;
(Ⅱ)若点P为椭圆W上不同于点A的点,直线AP与圆O的另一个交点为Q.是否存在点P,使得 ?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.函数fx=ex+x2+x+1gx)的图象关于直线2x﹣y﹣3=0对称,PQ分别是函数fx),gx)图象上的动点,则|PQ|的最小值为__

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设二次函数满足条件:

(1)当,且

(2)当时,

(3)在R上的最小值为0.

求最大的m(m>1),使得存在,只要,就有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为.

(1)设为参数,若,求直线的参数方程;

(2)已知直线与曲线交于,设,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC中,角A,B,C所对的边分别为a,b,c,则“∠C>90°”的一个充分非必要条件是(
A.sin2A+sin2B<sin2C
B.sinA= ,(A为锐角),cosB=
C.c2>2(a+b﹣1)
D.sinA<cosB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右焦点为,右顶点为,上顶点为,若 轴垂直,且.

(1)求椭圆方程;

(2)过点且不垂直于坐标轴的直线与椭圆交于两点,已知点,当时,求满足的直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}定义为a1>0,a11=a,an+1=an+ an2 , n∈N*
(1)若a1= (a>0),求 + +…+ 的值;
(2)当a>0时,定义数列{bn},b1=ak(k≥12),bn+1=﹣1+ ,是否存在正整数i,j(i≤j),使得bi+bj=a+ a2+ ﹣1.如果存在,求出一组(i,j),如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,中点.

(1)求点到平面的距离;

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案