【题目】数列{an}定义为a1>0,a11=a,an+1=an+ an2 , n∈N*
(1)若a1= (a>0),求 + +…+ 的值;
(2)当a>0时,定义数列{bn},b1=ak(k≥12),bn+1=﹣1+ ,是否存在正整数i,j(i≤j),使得bi+bj=a+ a2+ ﹣1.如果存在,求出一组(i,j),如果不存在,说明理由.
【答案】
(1)解:∵ ,
∴ ,
∴ ,
故 ,
∴ ;
(2)解:由 得 ,
两边平方得
故 ,
当b1=ak时,由 知 ,
又 ,数列{an}递增,
故b2=ak﹣1,
类似地,b3=ak﹣2,…,bt=ak﹣t+1,
又 , , ,
bi+bj=a10+a12,
∴ak﹣i+1+ak﹣j+1=a10+a12,
存在正整数i,j(i≤j),k﹣i+1=12,k﹣j+1=10i=k﹣11,j=k﹣9,
存在一组(i,j)=(k﹣11,k﹣9).
【解析】(1)化简 可得 ,从而利用裂项求和法求和.(2)易知 ,从而可得 ,而b1=ak , 故代入可推出b2=ak﹣1 , 从而类比可得b3=ak﹣2 , …,bt=ak﹣t+1 , 从而可得ak﹣i+1+ak﹣j+1=a10+a12 , 从而求得.
科目:高中数学 来源: 题型:
【题目】设是实数,已知奇函数,
(1)求的值;
(2)证明函数在R上是增函数;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0有解,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为等腰梯形,且底面与侧面垂直, , 分别为线段的中点, , , ,且.
(1)证明: 平面;
(2)求与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<ex的解集为( )
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(4,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为抛物线上存在一点到焦点的距离等于3.
(1)求抛物线的方程;
(2)过点的直线与抛物线相交于两点(两点在轴上方),点关于轴的对称点为,且,求的外接圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com