精英家教网 > 高中数学 > 题目详情

【题目】数列{an}定义为a1>0,a11=a,an+1=an+ an2 , n∈N*
(1)若a1= (a>0),求 + +…+ 的值;
(2)当a>0时,定义数列{bn},b1=ak(k≥12),bn+1=﹣1+ ,是否存在正整数i,j(i≤j),使得bi+bj=a+ a2+ ﹣1.如果存在,求出一组(i,j),如果不存在,说明理由.

【答案】
(1)解:∵


(2)解:由

两边平方得

当b1=ak时,由

,数列{an}递增,

故b2=ak1

类似地,b3=ak2,…,bt=akt+1

bi+bj=a10+a12

∴aki+1+akj+1=a10+a12

存在正整数i,j(i≤j),k﹣i+1=12,k﹣j+1=10i=k﹣11,j=k﹣9,

存在一组(i,j)=(k﹣11,k﹣9).


【解析】(1)化简 可得 ,从而利用裂项求和法求和.(2)易知 ,从而可得 ,而b1=ak , 故代入可推出b2=ak1 , 从而类比可得b3=ak2 , …,bt=akt+1 , 从而可得aki+1+akj+1=a10+a12 , 从而求得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 其中是常数且,若的最小值是,满足条件的点是椭圆一弦的中点,则此弦所在的直线方程为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,则函数g(x)=f(f(x))﹣2在区间(﹣1,3]上的零点个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b,c为正数,且a+ + =1.则3a2+2bc+2ac+3ab的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是实数,已知奇函数,

(1)的值;

(2)证明函数R上是增函数;

(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0有解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥底面为等腰梯形且底面与侧面垂直 分别为线段的中点 .

1证明: 平面

2与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<ex的解集为(
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求焦点在轴,焦距为4,并且经过点的椭圆的标准方程;

(2)已知双曲线的渐近线方程为且与椭圆有公共焦点,求此双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为抛物线上存在一点到焦点的距离等于3.

(1)求抛物线的方程;

(2)过点的直线与抛物线相交于两点(两点在轴上方),点关于轴的对称点为的外接圆的方程.

查看答案和解析>>

同步练习册答案