精英家教网 > 高中数学 > 题目详情

【题目】已知矩阵,直线经矩阵所对应的变换得到直线,直线又经矩阵所对应的变换得到直线,求直线的方程.

【答案】

【解析】

求出,确定变换前直线的点与变换后直线的点坐标关系,利用变换后点在上,建立方程,求出,同理确定变换前直线的点与变换后直线的点坐标关系,即可求出结论.

解:

P(xy)l1上的任意一点,

其在BA所对应的变换作用下的像为(xy′)

由题意可得,点(xy′)在直线l3上,

所以2axby40即为直线l1xy40

b=-1.

此时,同理可设Q(x0y0)l2上的任意一点,

其在B所对应的变换作用下的像为(x0y0)

(x0y0)在直线l3上,所以2y0x040

故直线l2的方程为2yx40,即x2y40.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在边长为的等边三角形中,点分别是边上的点,满足,将沿直线折到的位置. 在翻折过程中,下列结论成立的是(

A.在边上存在点,使得在翻折过程中,满足平面

B.存在,使得在翻折过程中的某个位置,满足平面平面

C.,当二面角为直二面角时,

D.在翻折过程中,四棱锥体积的最大值记为的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若,过分别作曲线的切线,且关于轴对称,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知抛物线C:的焦点为F,过F的直线交抛物线C于A,B两点.

(1)求线段AF的中点M的轨迹方程;

(2)已知△AOB的面积是△BOF面积的3倍,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间内没有极值点.

1)求实数的取值范围;

2)若函数在区间的最大值为且最小值为,求的取值范围.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为厦门市2018年国庆节7天假期的楼房认购量与成交量的折线图,请你根据折线图对这7天的认购量(单位:套)与成交量(单位:套),则下列选项中正确的是(

A.日成交量的中位数是10

B.日成交量超过日平均成交量的有2

C.认购量与日期正相关

D.107日认购量的增长率小于107日成交量的增长率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医科大学实习小组为研究实习地昼夜温差与患感冒人数之间的关系,分别到当地气象部门和某医院抄录了1月份至3月份每月5日、20日的昼夜温差情况与因患感冒而就诊的人数,得到如表资料:

日期

15

120

25

220

35

320

昼夜温差

10

11

13

12

8

6

就诊人数(人)

22

25

29

26

16

12

该小组确定的研究方案是:先从这六组数据中随机选取4组数据求线性回归方程,再用剩余的2组数据进行检验.

1)求剩余的2组数据中至少有一组是20日的概率;

2)若选取的是120日,25日,220日,35日四组数据.

①请根据这四组数据,求出关于的线性回归方程用分数表示);

②若由线性回归方程得到的估计数据与剩余的检验数据的误差均不超过1人,则认为得到的线性回归方程是理想的,试问①中所得线性回归方程是否理想?

附参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,平面ABCD,底面ABCD是等腰梯形,

1)证明:平面PAC

2)若,设,且,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:(常数),,(.数列满足:.

1)分别求的值:

2)求数列的通项公式;

3)问:数列的每一项能否均为整数?若能,求出的所有可能值;若不能,请说明理由.

查看答案和解析>>

同步练习册答案