精英家教网 > 高中数学 > 题目详情
14.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2-4ρ(sinθ+cosθ)+4=0.
(Ⅰ)写出直线l的极坐标方程;
(Ⅱ)求直线l与曲线C交点的极坐标(ρ≥0,0≤θ<2π)

分析 (Ⅰ)直线l的参数方程消去参数t,得到直线l的普通方程,再将$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入能求出直线l的极坐标方程.
(Ⅱ)联立直线l与曲线C的极坐标方程,能求出l与C交点的极坐标.

解答 解:(Ⅰ)∵直线l的参数方程为$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),
∴消去参数t,得到直线l的普通方程x+y-2=0,
再将$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入x+y-2=0,得ρcosθ+ρsinθ=2.…(5分)
(Ⅱ)联立直线l与曲线C的极坐标方程
$\left\{\begin{array}{l}{ρcosθ+ρsinθ=2}\\{{ρ}^{2}-4ρ(sinθ+cosθ)+4=0}\end{array}\right.$,
∵ρ≥0,0≤θ≤2π,∴解得$\left\{\begin{array}{l}{{ρ}_{1}=2}\\{{θ}_{1}=0}\end{array}\right.$或$\left\{\begin{array}{l}{{ρ}_{2}=2}\\{{θ}_{2}=\frac{π}{2}}\end{array}\right.$,
∴l与C交点的极坐标分别为(2,0),(2,$\frac{π}{2}$).…(10分)

点评 本题考查直线的极坐标方程的求法,考查直线l与曲线C交点的极坐标的求法,是基础题,解题时要认真审题,注意极坐标和直角坐标的互化公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图为某几何体的三视图,则该几何体的体积为(  )
A.16+πB.16+4πC.8+πD.8+4π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知正四棱锥侧面是正三角形,则侧棱与底面所成角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,且|$\overrightarrow{b}$|=1,|$\overrightarrow{b}$-2$\overrightarrow{a}$|=1,则|$\overrightarrow{a}$|=(  )
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.抛物线的准线方程是y=-1,则抛物线的标准方程是x2=4y.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知圆O:x2+y2=4,M(1,0),直线l:x+y=b,P在圆O上,Q在直线l上,满足$\overrightarrow{MP}$•$\overrightarrow{MQ}$=0,|$\overrightarrow{MP}$|=|$\overrightarrow{MQ}$|,则b的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若双曲线$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1(m<0<n)的渐近线方程是y=$±\sqrt{2}$x,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{6}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,且S1=2,$\frac{{S}_{n+1}}{n+1}$=$\frac{{S}_{n}}{n}$+1,数列{bn}满足b1=1,bn+1=($\sqrt{2}$)${\;}^{{a}_{n}}$.
(1)求数列{an},{bn}的通项公式;
(2)若数列{cn}满足cn=an(bn+1),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.b2=ac是三个非零实数a,b,c成等比数列的(  )
A.充要条件B.充分但不必要条件
C.必要但不充分条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案