精英家教网 > 高中数学 > 题目详情
2.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,且|$\overrightarrow{b}$|=1,|$\overrightarrow{b}$-2$\overrightarrow{a}$|=1,则|$\overrightarrow{a}$|=(  )
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

分析 直接利用向量的数量积,化简求解即可.

解答 解:非零向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,且|$\overrightarrow{b}$|=1,|$\overrightarrow{b}$-2$\overrightarrow{a}$|=1,
∴$\overrightarrow{b}$2+4$\overrightarrow{a}$2-4$\overrightarrow{b}$•$\overrightarrow{a}$=1+4|$\overrightarrow{a}$|2-4|$\overrightarrow{b}$|•|$\overrightarrow{a}$|cos$\frac{π}{3}$=1+4|$\overrightarrow{a}$|2-2|$\overrightarrow{a}$|=1,
解得|$\overrightarrow{a}$|=$\frac{1}{2}$,
故选:A.

点评 本题考查向量的模的求法,数量积的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.下列有关命题中,正确命题的序号是④.
①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;
②命题“?x∈R,x2+x-1<0”的否定是“?x∈R,x2+x-1>0”;
③命题“若x=y,则sinx=siny”的逆否命题是假命题.
④若“p或q为真命题,则p,q至少有一个为真命题.”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设F1、F2为双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$的两个焦点,点P在双曲线上,且满足∠F1PF2=60°,则△F1PF2的面积为9$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明:PA∥平面EDB;
(2)求直线PB与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知抛物线x2=8y的焦点为F,在抛物线内有一点A(4,4),若该抛物线上存在一动点P,则|PA|+|PF|的最小值为(  )
A.$4\sqrt{2}+2$B.4C.$2\sqrt{5}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.从甲、乙两部分中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示.

(Ⅰ)分别求出甲、乙两组数据的中位数,并比较两组数据的分散程度(只需给出结论);
(Ⅱ)甲组数据频率分别直方图如图2所示,求a,b,c的值;
(Ⅲ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2-4ρ(sinθ+cosθ)+4=0.
(Ⅰ)写出直线l的极坐标方程;
(Ⅱ)求直线l与曲线C交点的极坐标(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a≥1,x≥0,证明:不等式ex-x-1≤$\frac{a{x}^{2}{e}^{x}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.甲、乙、丙三人独立参加体育达标测试,已知甲、乙、丙各自通过测试的概率分别为$\frac{2}{3}$,$\frac{3}{4}$,p,且他们是否通过测试互不影响.若三人中只有甲通过的概率为$\frac{1}{16}$,则甲、丙二人中至少有一人通过测试的概率为(  )
A.$\frac{7}{8}$B.$\frac{3}{4}$C.$\frac{5}{8}$D.$\frac{6}{7}$

查看答案和解析>>

同步练习册答案