【题目】设α∈(0, ),满足 sinα+cosα= .
(1)求cos(α+ )的值;
(2)求cos(2α+ π)的值.
【答案】
(1)解:∵α∈(0, ),满足 sinα+cosα= =2sin(α+ ),∴sin(α+ )= .
∴cos(α+ )= = .
(2)解:∵cos(2α+ )=2 ﹣1= ,sin(2α+ )=2sin(α+ ) cos(α+ )=2 = ,
∴cos(2α+ π)=cos[(2α+ )+ ]=cos(2α+ )cos ﹣sin(2α+ )sin = ﹣ = .
【解析】(1)利用两角和的正弦公式求得 sin(α+ )的值,再利用同角三角函数的基本关系求得 cos(α+ ) 的值.(2)利用二倍角公式求得 cos(2α+ )的值,可得sin(2α+ )的值,从而求得cos(2α+ π)=cos[(2α+ )+ ]的值.
科目:高中数学 来源: 题型:
【题目】下列数列中,既是递增数列又是无穷数列的是( )
A.1, , , ,…
B.﹣1,﹣2,﹣3,﹣4,…
C.﹣1,﹣ ,﹣ ,﹣ ,…
D.1, , ,…,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,PC⊥平面ABC,∠ACB=45°,BC=2 ,AB=2.
(1)求AC的长;
(2)若PC= ,点M在侧棱PB上,且 = ,当λ为何值时,二面角B﹣AC﹣M的大小为30°.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且asinAsinB+bcos2A= a.
(1)求 ;
(2)若c2=a2+ b2 , 求角C.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且a2+c2=b2﹣ac.
(1)求B的大小;
(2)设∠BAC的平分线AD交BC于D,AD=2 ,BD=1,求cosC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是奇函数,且对于任意x∈R满足f(2﹣x)=f(x),当0<x≤1时,f(x)=lnx+2,则函数y=f(x)在(﹣2,4]上的零点个数是( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小王为了锻炼身体,每天坚持“健步走”,并用计步器进行统计.小王最近8天“健步走”步数的频数分布直方图(图1)及相应的消耗能量数据表(表1)如下:
健步走步数(前步) | 16 | 17 | 18 | 19 |
消耗能量(卡路里) | 400 | 440 | 480 | 520 |
(Ⅰ)求小王这8天“健步走”步数的平均数;
(Ⅱ)从步数为17千步,18千步,19千步的几天中任选2天,求小王这2天通过“健步走”消耗的能量和不小于1000卡路里的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}中,已知对任意n∈N* , a1+a2+a3+…+an=3n﹣1,则a12+a22+a32+…+an2等于( )
A.(3n﹣1)2
B.
C.9n﹣1
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了考查培育的某种植物的生长情况,从试验田中随机抽取100柱该植物进行检测,得到该植物高度的频数分布表如下:
组序 | 高度区间 | 频数 | 频率 |
1 | [230,235) | 14 | 0.14 |
2 | [235,240) | ① | 0.26 |
3 | [240,245) | ② | 0.20 |
4 | [245,250) | 30 | ③ |
5 | [250,255) | 10 | ④ |
合计 | 100 | 1.00 |
(Ⅰ)写出表中①②③④处的数据;
(Ⅱ)用分层抽样法从第3、4、5组中抽取一个容量为6的样本,则各组应分别抽取多少个个体?
(Ⅲ)在(Ⅱ)的前提下,从抽出的容量为6的样本中随机选取两个个体进行进一步分析,求这两个个体中至少有一个来自第3组的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com