精英家教网 > 高中数学 > 题目详情
12.在复平面xOy内,若A(2,-1),B(0,3),则?OACB中,点C对应的复数为(  )
A.2+2iB.2-2iC.1+iD.1-i

分析 设C(x,y),由O(0,0),A(2,-1),B(0,3),可得$\overrightarrow{OB}、\overrightarrow{AC}$,结合OACB为平行四边形列式求得复数z.

解答 解:如图,设C(x,y),
∵O(0,0),A(2,-1),B(0,3),
∴$\overrightarrow{OB}=(0,3)$,$\overrightarrow{AC}=(x-2,y+1)$,
由题意可得$\overrightarrow{OB}=\overrightarrow{AC}$,即$\left\{\begin{array}{l}{x-2=0}\\{y+1=3}\end{array}\right.$,解得x=y=2.
∴复数z=2+2i.
故选:A.

点评 本题考查复数的性质和应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在△ABC中,角A,B,C所对应的边长分别为a,b,c,面积为S,若S+a2=(b+c)2,则tanA=(  )
A.$\frac{8}{15}$B.-$\frac{8}{15}$C.$\frac{15}{17}$D.-$\frac{15}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.由表格中的数据可以判定函数f(x)=lnx-x+2的一个零点所在的区间是(k,k+1)(k∈Z),则k的值为(  )
x12345
lnx00.691.101.391.61
x-2-10123
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线$\left\{\begin{array}{l}x=1-\frac{1}{2}t\\ y=-3\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数)和圆x2+y2=16交于A,B两点,则AB的中点坐标为(  )
A.(3,-3)B.$(-\sqrt{3},3)$C.$(\sqrt{3},-3)$D.(-$\frac{3}{2}$,-$\frac{\sqrt{3}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+$\frac{1}{2}$x2-4x.
(1)求f′(x);
(2)求函数在区间[-2,2]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2cos($\frac{π}{2}$-ωx)+2sin($\frac{π}{3}$-ωx)(ω>0,x∈R),若f$(\frac{π}{6})$+f$(\frac{π}{2})$=0,且f(x)在区间$(\frac{π}{6},\frac{π}{2})$上递减.
(1)求f(0)的值;     
(2)求ω;
(3)解不等式f(x)≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知两圆相交于A(-1,3),B(-6,m)两点,且这两圆的圆心均在直线x-y+c=0上,则m+2c的值为(  )
A.-1B.26C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(2x-3)4=a0+a1x+a2x2+a3x3+a4x4,求
(1)a1+a2+a3+a4
(2)(a0+a2+a42-(a1+a32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.8($\sqrt{3}$+1)+πB.8($\sqrt{3}$+1)+2πC.8($\sqrt{3}$+1)一πD.8($\sqrt{3}$+l)

查看答案和解析>>

同步练习册答案