精英家教网 > 高中数学 > 题目详情

已知:中,,三边分别是,则有;类比上述结论,写出下列条件下的结论:四面体中,的面积分别是,二面角的度数分别是,则    

s1cos+s2cos+s3cos

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF 平面ABCD,BF=3,G、H分别是CE和CF的中点.
(Ⅰ)求证:AF//平面BDGH;
(Ⅱ)求
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是正方形,⊥平面分别是,的中点.
(Ⅰ) 求证:
(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面平面,四边形为矩形,的中点,.(1)求证:;(2)若与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,四棱锥中,⊥平面,,分别为线段的中点.

(1)求证:∥平面;    
(2)求证:⊥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

由命题“RtABC中,两直角边分别为a,b,斜边上的高为h,则得”由此可类比出命题“若三棱锥S-ABC的三条侧棱SA,SB,SC两两垂直,长分别为a,b,c,底面ABC上的高为h,则得____________________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

棱长为1的正方体和它的外接球与一个平面相交得到的截面是一个圆及它的内接正三角形,那么球心到截面的距离等于   ▲ .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若四棱柱的底面是边长为1的正方形,且侧棱垂直于底面,若与底面成60°角,则二面角的平面角的正切值为
           

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在空间四边形中,分别是的中点,,则异面直线所成的角为            

查看答案和解析>>

同步练习册答案