【题目】设函数f(x)=ax+
(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方
程为y=3.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,
并求出此定值.
科目:高中数学 来源: 题型:
【题目】2017年5月,来自“一带一路”沿线的20国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购.乘坐高铁可以网络购票,为了研究网络购票人群的年龄分布情况,在5月31日重庆到成都高铁9600名网络购票的乘客中随机抽取了120人进行了统计并记录,按年龄段将数据分成6组:
,得到如图所示的直方图:
![]()
(1)若从总体的9600名网络购票乘客中随机抽取一人,估计其年龄大于35岁的概率;
(2)试估计总体中年龄在区间
内的人数;
(3)试通过直方图,估计5月31日当天网络购票的9600名乘客年龄的中位数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程是
(
为参数),以原点
为极点,
轴正半轴为极轴,建立极坐标系,直线
的极坐标方程为
.
(Ⅰ)求曲线
的普通方程与直线
的直角坐标方程;
(Ⅱ)已知直线
与曲线
交于
,
两点,与
轴交于点
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】黄金分割比例
具有严格的比例性,艺术性,和谐性,蕴含着丰富的美学价值.这一比值能够引起人们的美感,被称为是建筑和艺术中最理想的比例.我们把离心率
的椭圆称为“黄金椭圆”,则以下四种说法中正确的个数为( )
①椭圆
是“黄金椭圆;
②若椭圆
,
的右焦点
且满足
,则该椭圆为“黄金椭圆”;
③设椭圆
,
的左焦点为F,上顶点为B,右顶点为A,若
,则该椭圆为“黄金椭圆”;
④设椭圆,
,
的左右顶点分别A,B,左右焦点分别是
,
,若
,
,
成等比数列,则该椭圆为“黄金椭圆”;
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆与抛物线
有一个相同的焦点,且该椭圆的离心率为
,
(Ⅰ)求该椭圆的标准方程:
(Ⅱ)求过点
的直线与该椭圆交于A,B两点,O为坐标原点,若
,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(多选)已知函数
,其中正确结论的是( )
A.当
时,函数
有最大值.
B.对于任意的
,函数
一定存在最小值.
C.对于任意的
,函数
是
上的增函数.
D.对于任意的
,都有函数
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是梯形,
,
,
是正三角形,
为
的中点,平面
平面
.
![]()
(1)求证:
平面
;
(2)在棱
上是否存在点
,使得二面角
的余弦值为
?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com