【题目】黄金分割比例
具有严格的比例性,艺术性,和谐性,蕴含着丰富的美学价值.这一比值能够引起人们的美感,被称为是建筑和艺术中最理想的比例.我们把离心率
的椭圆称为“黄金椭圆”,则以下四种说法中正确的个数为( )
①椭圆
是“黄金椭圆;
②若椭圆
,
的右焦点
且满足
,则该椭圆为“黄金椭圆”;
③设椭圆
,
的左焦点为F,上顶点为B,右顶点为A,若
,则该椭圆为“黄金椭圆”;
④设椭圆,
,
的左右顶点分别A,B,左右焦点分别是
,
,若
,
,
成等比数列,则该椭圆为“黄金椭圆”;
A.1B.2C.3D.4
科目:高中数学 来源: 题型:
【题目】平面
与平面
平行的充分条件可以是( )
A.
内有无穷多条直线都与
平行
B.直线
,
,且直线a不在
内,也不在
内
C.直线
,直线
,且
,![]()
D.
内的任何一条直线都与
平行
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,
轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线
的极坐标方程为
,曲线
的极坐标方程为
,![]()
(l)设
为参数,若
,求直线
的参数方程;
(2)已知直线
与曲线
交于
,
设
,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax+
(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方
程为y=3.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,
并求出此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
![]()
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益y(单位:万元) | 1 | 3 | 4 | 7 |
表中的数据显示,x与y之间存在线性相关关系,请将(2)的结果填入上表的空白栏,并计算y关于x的回归方程.
回归直线的斜率和截距的最小二乘法估计公式分别为
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为研究女高中生身高与体重之间的关系,一调查机构从某中学中随机选取8名女高中生,其身高
和体重
数据如下表所示:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 164 | 160 | 158 | 172 | 162 | 164 | 174 | 166 |
体重 | 60 | 46 | 43 | 48 | 48 | 50 | 61 | 52 |
该调查机构绘制出该组数据的散点图后分析发现,女高中生的身高与体重之间有较强的线性相关关系.
![]()
(1)调查员甲计算得出该组数据的线性回归方程为
,请你据此预报一名身高为
的女高中生的体重;
(2)调查员乙仔细观察散点图发现,这8名同学中,编号为1和4的两名同学对应的点与其他同学对应的点偏差太大,于是提出这样的数据应剔除,请你按照这名调查人员的想法重新计算线性回归话中,并据此预报一名身高为
的女高中生的体重;
(3)请你分析一下,甲和乙谁的模型得到的预测值更可靠?说明理由.
附:对于一组数据
,其回归方程
的斜率和截距的最小二乘法估计分别为:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
,定义椭圆
的“相关圆”方程为
.若抛物线
的焦点与椭圆
的一个焦点重合,且椭圆
短轴的一个端点和其两个焦点构成直角三角形.
(1)求椭圆
的方程和“相关圆”
的方程;
(2)过“相关圆”
上任意一点
的直线
与椭圆
交于
两点.
为坐标原点,若
,证明原点
到直线
的距离是定值,并求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在
ABC中,角A,B,C所对的边分別为a,b,c,且asinAcosC+csinAcosA=
c.
(1)若c=1,sinC=
,求
ABC的面积S;
(2)若D是AC的中点,且cosB=
,BD=
,求
ABC的三边长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com