【题目】为研究女高中生身高与体重之间的关系,一调查机构从某中学中随机选取8名女高中生,其身高
和体重
数据如下表所示:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 164 | 160 | 158 | 172 | 162 | 164 | 174 | 166 |
体重 | 60 | 46 | 43 | 48 | 48 | 50 | 61 | 52 |
该调查机构绘制出该组数据的散点图后分析发现,女高中生的身高与体重之间有较强的线性相关关系.
![]()
(1)调查员甲计算得出该组数据的线性回归方程为
,请你据此预报一名身高为
的女高中生的体重;
(2)调查员乙仔细观察散点图发现,这8名同学中,编号为1和4的两名同学对应的点与其他同学对应的点偏差太大,于是提出这样的数据应剔除,请你按照这名调查人员的想法重新计算线性回归话中,并据此预报一名身高为
的女高中生的体重;
(3)请你分析一下,甲和乙谁的模型得到的预测值更可靠?说明理由.
附:对于一组数据
,其回归方程
的斜率和截距的最小二乘法估计分别为:
.
【答案】(1)一名身高为
的女大学生的体重约为
(2)回归方程为
,一名身高为
的女大学生的体重约为
(3)乙的模型得到的预测值更可靠,详见解析
【解析】
(1)计算平均数,求出
,即可求出回归方程;把178代入即可求出
的女大学生的体重;
(2)根据余下的数据计算平均数,求出
,
,即可求出回归方程;代入公式,即可求出身高为
的女大学生的体重;
(3)从散点图以及计算数据两个方面来分析甲和乙谁的方程可靠.
解:(1)经计算:
,
于是:
,
则该组数据的线性回归方程为
,
当
时,
,
于是:一名身高为
的女大学生的体重约为
;
(2)按照调查人员乙的想法,剩下的数据如下表所示:
编号 | 2 | 3 | 5 | 6 | 7 | 8 |
身高 | 160 | 158 | 162 | 164 | 174 | 166 |
体重 | 46 | 43 | 48 | 50 | 61 | 52 |
经计算:
,
于是:
![]()
,
则该组数据的线性回归方程为
,
当
时,
,
于是:一名身高为
的女大学生的体重约为
;
(3)乙的模型得到的预测值更可靠,
理由如下:①从散点图可以看出,第一组数据和第四组数据确实偏差较大,为更准确的刻画变化趋势,有必要把这两个数据剔除掉;
②从计算结果来看,相对于第七组数据
的女大学生体重,甲对身高
的女大学生的预测值明显偏低,而利用乙的回归方程得到的预测值增幅较合理.
(以上给出了两种理由,考生答出其中任意一种或其他合理理由均可得分)
科目:高中数学 来源: 题型:
【题目】给出下列说法:
(1)命题“
,
”的否定形式是“
,
”;
(2)已知
,则
;
(3)已知回归直线的斜率的估计值是2,样本点的中心为
,则回归直线方程为
;
(4)对分类变量
与
的随机变量
的观测值
来说,
越小,判断“
与
有关系”的把握越大;
(5)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变.
其中正确说法的个数为( )
A.2B.3C.4D.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】黄金分割比例
具有严格的比例性,艺术性,和谐性,蕴含着丰富的美学价值.这一比值能够引起人们的美感,被称为是建筑和艺术中最理想的比例.我们把离心率
的椭圆称为“黄金椭圆”,则以下四种说法中正确的个数为( )
①椭圆
是“黄金椭圆;
②若椭圆
,
的右焦点
且满足
,则该椭圆为“黄金椭圆”;
③设椭圆
,
的左焦点为F,上顶点为B,右顶点为A,若
,则该椭圆为“黄金椭圆”;
④设椭圆,
,
的左右顶点分别A,B,左右焦点分别是
,
,若
,
,
成等比数列,则该椭圆为“黄金椭圆”;
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆与抛物线
有一个相同的焦点,且该椭圆的离心率为
,
(Ⅰ)求该椭圆的标准方程:
(Ⅱ)求过点
的直线与该椭圆交于A,B两点,O为坐标原点,若
,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若
表示从左到右依次排列的9盏灯,现制定开灯与关灯的规则如下:
(1)对一盏灯进行开灯或关灯一次叫做一次操作;
(2)灯
在任何情况下都可以进行一次操作;对任意的
,要求灯
的左边有且只有灯
是开灯状态时才可以对灯
进行一次操作.如果所有灯都处于开灯状态,那么要把灯
关闭最少需要_____次操作;如果除灯
外,其余8盏灯都处于开灯状态,那么要使所有灯都开着最少需要_____次操作.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(多选)已知函数
,其中正确结论的是( )
A.当
时,函数
有最大值.
B.对于任意的
,函数
一定存在最小值.
C.对于任意的
,函数
是
上的增函数.
D.对于任意的
,都有函数
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学专著《九章算术》中有一个“两鼠穿墙题”,其内容为:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.问何日相逢?各穿几何?”如图的程序框图源于这个题目,执行该程序框图,若输入x=20,则输出的结果为( )
![]()
A. 3B. 4C. 5D. 6
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com