精英家教网 > 高中数学 > 题目详情
(本题满分12分)已知函数
(1)当的取值范围;
(2)是否存在这样的实数,使得函数在区间上为减函数,且最大值为1,若存在,求出值;若不存在,说明理由。
(1);(2)这样的不存在。

试题分析:(1)根据对数函数有意义可知,真数部分上恒成立,即,得到a的范围。
(2)假设存在这样的
,且有,可知外层为增函数,得到a的范围,进而求解最值。
解:(1),   上恒成立,即

    …………..4分
(2)假设存在这样的
,且有………..6分
在区间内为增函数,    即………………8分
     …………..10分
内,所以这样的不存在……………12分
点评:解决该试题的关键是根据已知中恒有意义说明了最小值处 函数值大于零,同时根据存在a使得函数递减,则利用同增异减的思想得到a的取值情况。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知定义在(-∞,—1)∪(1,+∞)上的奇函数满足:①f(3)=1;②对任意的x>2, 均有f(x)>0,③对任意的x>0,y>0.均有f(x+1)+f(y+1)=f(xy+1) 
⑴试求f(2)的值;
⑵证明f(x)在(1,+∞)上单调递增;
⑶是否存在实数a,使得f(cos2θ+asinθ)<3对任意的θ(0,π)恒成立?若存在,请求出a的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数=
(1)证明:上是增函数;(2)求上的值域。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,那么=_____________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在上的奇函数对任意都有,当 时,,则的值为(     )
A.B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
某市郊区一村民小组有100户农民,且都从事蔬菜种植.据调查,平均每户的年收入为3万元.为了调整产业结构,郊区政府决定动员该村部分农民从事蔬菜加工.据预测,若能动员户农民从事蔬菜加工,则剩下的继续从事蔬菜种植的农民平均每户的年收入有望提高%,而从事蔬菜加工的农民平均每户的年收入将为万元.
(1)在动员户农民从事蔬菜加工后,要使从事蔬菜种植的农民的总年收入不低于动员前从事蔬菜种植的农民的总年收入,求的取值范围;
(2)在(1)的条件下,要使这100户农民中从事蔬菜加工的农民的总年收入始终不高于从事蔬菜种植的农民的总年收入,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某企业为打入国际市场,决定从A、B两种产品中只选择一种进行投资生产.已
知投资生产这两种产品的有关数据如下表:(单位:万美元)
项目类别
年固定成本
每件产品成本
每件产品销售价
每年最多可生产的件数
A产品
10
m
5
100
B产品
20
4
9
60
其中年固定成本与年生产的件数无关,m为待定常数,其值由生产A产品的原材料价格决定,预计m∈[3,4].另外,年销售x件B产品时需上交0.05x2万美元的特别关税.假设生产出来的产品都能在当年销售出去.
(1)写出该厂分别投资生产A、B两种产品的年利润y1,y2与生产相应产品的件数x之间的函数关系并指明其定义域;
(2)如何投资才可获得最大年利润?请你做出规划.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某商品在近30天内每天的销售价格P(元)与时间t(天)的函数关系式为:
P=;该商品的日销售量Q(件)与时间(天)的函数关系式为:
Q=-t+40(0<t≤30,t∈N*).求这种商品日销售金额的最大值,并指出日销售金额最大的一天是30天中的哪一天?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)广东某民营企业主要从事美国的某品牌运动鞋的加工生产,按国际惯例以美元为结算货币,依据以往加工生产的数据统计分析,若加工产品订单的金额为万美元,可获得加工费近似为万美元,受美联储货币政策的影响,美元贬值,由于生产加工签约和成品交付要经历一段时间,收益将因美元贬值而损失万美元,其中为该时段美元的贬值指数,,从而实际所得的加工费为(万美元).
(Ⅰ)若某时期美元贬值指数,为确保企业实际所得加工费随的增加而增加,该企业加工产品订单的金额应在什么范围内?
(Ⅱ)若该企业加工产品订单的金额为万美元时共需要的生产成本为万美元,已知该企业加工生产能力为(其中为产品订单的金额),试问美元的贬值指数在何范围时,该企业加工生产将不会出现亏损.

查看答案和解析>>

同步练习册答案