精英家教网 > 高中数学 > 题目详情
过原点作曲线y=ex的切线,求切点的坐标及切线的斜率.
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用
分析:欲求切点坐标,只须求出切线的方程即可,故先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而得到切线的方程,最后利用切线过原点即可解决.
解答: 解:y′=ex
设切点的坐标为(x0,ex0),切线的斜率为k,
则k=ex0,故切线方程为y-ex0=ex0(x-x0),
又切线过原点,∴-ex0=ex0(-x0),∴x0=1,y0=e,k=e.
∴切点(1,e);切线的斜率为e.
点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若实数a,b满足a2+b2-4b+3=0,函数f(x)=asin2x+bcos2x+1的最大值为φ(a,b),则φ(a,b)的最小值为(  )
A、2
B、
2
+1
C、
3
+1
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

复数2+i(i为虚数单位)的模为(  )
A、
5
B、±(2+i)
C、
3
D、2+i

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校随机抽取了100名学生进行身高调查,得到如下统计表:
身高(cm) [145,155) [155,165) [165,175) [175,185) [185,195) [195,205)
人数 12 a 35 22 b 2
频率 0.12 c d 0.22 0.04 0.02
(Ⅰ)求表中b、c、d的值;
(Ⅱ)根据上面统计表,估算这100名学生的平均身高
.
x

(Ⅲ)若从上面100名学生中,随机选取2名身高不低于185cm的学生,求这2名学生中至少有1名学生身高不低于195cm的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|2x-1|,x∈R.
(1)若不等式f(x)≤a的解集为{x|0≤x≤1},求a的值;
(2)若g(x)=
1
f(x)+f(x+1)+m
的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在《我是歌手》的比赛中,甲、乙两位歌手的前十场比赛成绩的茎叶图如图所示:

(Ⅰ)请根据茎叶图,用统计的观点,分别从两个不同的角度评价甲、乙两位歌手比赛成绩的差异;
(Ⅱ)将每场比赛都选择支持同一位歌手的观众称为该歌手的“铁杆粉丝”,现从歌手甲的3位“铁杆粉丝”和歌手乙的2位“铁杆粉丝”中任选2人,求2人中至少一位是歌手甲的“铁杆粉丝”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x-1.
(Ⅰ)若定义域为[-2,3],求f(x)的值域;
(Ⅱ)若f(x)的值域为[-2,2],且定义域为[a,b],求b-a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}的前n项和为Sn,且4Sn=an2+2an对任意的n∈N*恒成立.
(Ⅰ)求a1、a2及数列{an}的通项公式;
(Ⅱ)设bn=
1
anan+1
,记数列{bn}的前n项和为Tn,是否存在实数λ,使不等式λSn+1>anTn+1 对任意的正整数n都成立.若存在,求出λ的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=|x-1|+|x+m|(m∈R),g(x)=2x-1,若m>-1,x∈[-m,1],不等式f(x)<g(x)恒成立,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案