精英家教网 > 高中数学 > 题目详情

椭圆的两个焦点分别是F1(-4,0),F2(4,0)且椭圆上一点到两焦点的距离之和为12,则此椭圆的方程为


  1. A.
    数学公式+数学公式=1
  2. B.
    数学公式+数学公式=1
  3. C.
    数学公式+数学公式=1
  4. D.
    数学公式+数学公式=1
C
分析:先假设椭圆的标准方程,再根据椭圆的两个焦点分别是F1(-4,0),F2(4,0)且椭圆上一点到两焦点的距离之和为12,确定几何量c,a,从而可求椭圆的标准方程.
解答:由题意,设椭圆的方程为
∵椭圆的两个焦点分别是F1(-4,0),F2(4,0)
∴c=4
∵椭圆上一点到两焦点的距离之和为12
∴2a=12
∴a=6
∴b2=a2-c2=36-16=20
∴椭圆的方程为
故选C.
点评:本题以椭圆的性质为载体,考查椭圆的定义,考查待定系数法求椭圆的方程,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的两个焦点分别是F1(0,-2
2
),F2(0,2
2
)
,离心率e=
2
2
3

(1)求椭圆的方程;
(2)一条不与坐标轴平行的直线l与椭圆交于不同的两点M,N,且线段MN中点的横坐标为-
1
2
,求直线l的倾斜角的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列各曲线的标准方程.
(1)已知椭圆的两个焦点分别是(-2,0),(2,0),并且经过点(
5
2
,-
3
2
).
(2)已知抛物线焦点在x轴上,焦点到准线的距离为6.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆的两个焦点分别是F1(-4,0),F2(4,0)且椭圆上一点到两焦点的距离之和为12,则此椭圆的方程为(  )

查看答案和解析>>

科目:高中数学 来源:2012年山东省高考模拟预测卷(四)文科数学试卷(解析版) 题型:解答题

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

(Ⅰ)求椭圆及其“伴随圆”的方程;

(Ⅱ)过点P作直线,使得直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.求出的值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省汕头市高三第一次模拟考试数学文卷 题型:解答题

(本小题满分14分)

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

(Ⅰ) 求椭圆及其“伴随圆”的方程;

(Ⅱ) 过点P作直线,使得直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.求出的值.

 

查看答案和解析>>

同步练习册答案